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a b s t r a c t 

Comminution is the process of grainsize reduction due to grain crushing, which is common 

in both natural and industrial problems that involve brittle granular media. Grain crush- 

ing is a stochastic process, where the strength of individual grains is determined both by 

their own size and mineralogy, and the local arrangement of their neighbouring particles, 

here termed grainsize fabric . The relationship between these effects was described previ- 

ously using a stochastic lattice model of comminution, whose most general form further 

includes segregation and mixing. While the stochastic segregation and mixing dynamics 

have simple analogous differential equations for describing the equivalent continuum be- 

haviour, until now the stochastic comminution dynamics has lacked a smooth represen- 

tation. Here we resolve this gap by developing a homogeneous continuum model that is 

based on the same stochastic physics. We show that the new model yields the same re- 

sults as the stochastic lattice model in the limit of indefinitely large lattices. Given a time 

varying stress state, the model describes the time-evolution of the grainsize distribution by 

representing the state of the system in terms of a two-dimensional joint distribution over 

grainsize and local-average grainsize. The model has a scalable numerical implementation 

with a simple deterministic rule for time-evolution. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The behaviour of granular media depends on the relative proportions of the constituent grain sizes, the grainsize distribu-

tion . Understanding how this grainsize distribution evolves in granular media is important as they control many phenomena

in nature and industry. In particular, comminution is the process of grainsize reduction due to grain crushing, which crit-

ically determines the motion of earthquake fault gouges and the energetics of grinders and mills in mineral processing. In

confined granular media, comminution starts when the local stress inside a grain exceeds its crushing strength. After many

successive crushing events, this can significantly change the grainsize distribution of the material. The local stress inside a

grain depends on its interactions with its neighbouring grains, and their specific configuration encodes a “memory” of the

medium’s history. We define the local organisation of grainsizes within a representative volume element as the grainsize fab-

ric , and will show both how this measure is key to modelling the comminution process, and how it affects the evolution of

the grainsize distribution. In this paper, we eventually develop a simplified model where the grainsize fabric is represented

by a two-dimensional probability density function, which is different to the tensor-based representations of conventional
∗ Corresponding author. 
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contact and force fabrics (e.g., Kruyt, 2012; Oda, 1982 ), both in terms of the mathematical structure and physical role. The

continuum representation of materials such as Newtonian fluids and elastic solids has been widely used for many practi-

cal applications, thanks to the development of efficient continuum mechanics numerical solvers such as the finite element

method. For comminution processing, however, despite its prevalence a mathematical continuum description has not been

developed. Successful comminution models have been produced on the basis of breakage mechanics theory ( Einav, 2007a;

2007b; Zhang and Buscarnera, 2017 ) for closed systems without size-dependent advection from the neighbourhood. How-

ever, these are not appropriate for open systems where material can advect in space, as the grainsize dynamics further

depend on segregation and mixing. 

Recently we have partially resolved this issue of coupled grainsize dynamics by advancing a different modelling phi-

losophy, initially through the development of a novel stochastic lattice model ( Marks and Einav, 2015; 2017 ). We first

showed that this model predicts grainsize dynamics that agree well with open-system grainsize dynamics from field data

( Marks and Einav, 2015 ) and closed-system comminution dynamics from laboratory data for different initial grainsize dis-

tributions ( Guida et al., 2020 ). Additionally, we were able to derive the macroscopic partial differential equations that cor-

respond to the smooth limit of the stochastic lattice model for segregation and mixing, in the absence of comminution.

However, the homogenisation of the comminution part of the model was left behind, as it was deemed to be more difficult

to derive, since it relied on information about the relative arrangement of particles below the resolution of a representative

volume element. Here, we resolve exactly this gap, as we develop the deterministic homogenised continuum description of

the comminution part of the stochastic lattice model. 

The newly developed continuum model encodes the internal arrangement of grains in a two-dimensional probability dis-

tribution function over grainsize and neighbourhood grainsize. In this two-dimensional space, there is a zone of destruction

that grows with the externally applied stress such that anything within it will be crushed. The experimentally measurable

marginal grainsize distribution is recovered by summing over the neighbourhood grainsize axis. In this way, we show that

the new continuum model explicitly predicts smooth grainsize dynamics during confined comminution, which matches the

experimentally validated dynamics ( Guida et al., 2020 ) obtained by the stochastic model at the limit of large specimen sizes.

In the future this model could be combined with the deterministic homogenised continuum descriptions of the segregation

and the mixing. In this way we will finally be able to use continuum mechanics to describe the diverse problems of com-

minution in open systems, including complex geophysical phenomena such as earthquake fault gouges, rock flows, landslides

and avalanches, as well as industrial milling and grinding operations. 

1.1. Existing models of comminution 

Power law grain size distributions are often empirically observed in earthquake fault gouges ( An and Sammis, 1994;

Hattori and Yamamoto, 1999; Marone and Scholz, 1989; Sammis et al., 1987 ) and crushed ice ( Palmer and Sanderson, 1991 ).

This is very different from other processes such as the wind-deposition of aeolian sands ( Barndorff-Nielsen, 1977 ) where

exponentially decreasing distributions for the logarithm of particle size have been observed. Consequently many fractal-

inspired models ( McDowell et al., 1996; Turcotte, 1989 ) predicting power-law distributions in confined comminution are

among a diverse spectrum of theoretical explanations. Aranson and Tsimring (2006) , Grady and Kipp (1985) 

Meanwhile, log-normal distributions have been observed in comminution with thorough mixing. This was first explained

by Kolmogorov (1941) who showed that independent grain crushing events asymptotically lead to a log-normal distribution

by the central limit theorem. Halmos solved a similar problem in probability theory ( Halmos, 1944 ) and Epstein (1947) con-

structed a statistical model for the crushing of grains in terms of particle size distributions F n ( x ) indexed by discrete crushing

events n = 0 , 1 , 2 , . . . and explicitly proved the conditions for log-normality to be that the probability of crushing is inde-

pendent of the sizes of other grains and that the fragment distribution is the same for all events. Further refinements along

these lines were made in Dacey and Krumbein (1979) where a selection rule for which grain to break is added. Unfor-

tunately grain crushing is not independent from the properties of neighbouring grains in general, especially in confined

systems when dense particles are constantly in contact with one another. Crushing two uniformly graded samples of differ-

ent grainsizes and mixing them together yields a completely different grainsize distribution to first mixing them together

and then crushing. 

However, grainsize distributions observed in nature are rarely either log-normal or power-law, so breakage mechanics

( Einav, 20 07a; 20 07b ) describes closed comminution as a continuous thermodynamic process from an initial distribution

state. Before the stochastic lattice model ( Marks and Einav, 2017 ) was proposed, there were limited descriptions of how the

grainsize distributions should evolve as a function of applied stress and initial grainsize distribution. 

Many alternative models have been proposed, including mineral liberation models with population balance equations

( Ramkrishna, 20 0 0 ) and batch comminution ( King and Schneider, 1998 ). Another probabilistic liberation model has been

developed ( Gay, 2004 ) where entropy ( Espanol, 2004 ) plays a central role. However, these models do not explicitly predict

the time-evolution of grainsize distributions in confined systems with sustained particle contacts. 

These models also do not account for the internal rearrangement of neighbouring grains constituting the grainsize fabric

of the material, which is very important for comminution since two samples of granular matter with the same initial grain-

size distribution but different internal rearrangement of particles will have significantly different behaviour. For example,

crushing a sample up to some stress and then remixing the sample before further crushing may be easier than crushing the

soil without remixing ( Lrincz et al., 2005 ). 
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Fig. 1. The mapping from a volume of granular material to a lattice in the stochastic lattice model. Each representative volume element maps to a 1D array 

s t = 

(
s t 1 , s 

t 
2 , . . . , s 

t 
M 

)
with periodic boundary conditions. The lattice evolves according to a simple set of rules under comminution by an externally applied 

stress ratio σ ∗ . 

Fig. 2. The comminution rule of the stochastic lattice model for a cell s t 
j 
. When the applied stress ratio σ ∗( t ) exceeds some critical stress σ t 

j 
= 

σ
(
s t 

j−1 
, s t 

j 
, s t 

j+1 

)
, the new grainsize at the next time step is reduced by a factor of X t 

j 
which are independent identically distributed random variables 

following some given fragment distribution. Otherwise, the cell is left untouched. The same rule and σ ∗ applies for all M cells in the lattice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Stochastic lattice model 

The stochastic lattice model or heterarchal multi-scale model in Marks and Einav (2015, 2017) is the starting point of our

comminution model as it elegantly captures segregation, mixing and comminution in a unified lattice framework. The full

model describes a lattice state s t with elements s t 
i, j 

that evolve in discrete time t . Here, the t -superscripts are time labels

and not exponents, the index i discretises space into representative volume elements holding statistically significant samples

of grains, while j ∈ { 1 , 2 , . . . , M} for some large M is an internal grainsize coordinate for that representative volume element

i as depicted in Fig. 1 . Any properties predicted should converge in the limit of large M . The greatest appeal of this model is

its simplicity and consistency in covering a large range of granular phenomena. Since the packing of granular media greatly

depends on the grainsize distribution ( Göncü et al., 2010; Yu and Standish, 1988 ), another advantage of this model is its

ability to provide crucial information on the densification of granular materials due to comminution ( Guida et al., 2020 ). 

We consider the comminution rule for just a single representative volume element by dropping the space index i and

considering only the grainsize index j as depicted in Fig. 2 . For each cell j , there is a grainsize s t 
j 

that represents the average

grainsize of a collection of grains in that volume element. Every cell in the lattice represents a collection of grains with a

fixed total mass that remains constant in time such that mass conservation naturally arises even as its average grainsize s t 
j

changes over time. Every cell is subjected to the same external stress ratio σ ∗, which is the ratio of the applied stress to the

minimum stress needed to induce first crushing. Although not considered in this paper, the compaction and densification

may in principle be computed from the state of the grainsize distribution, as discussed in Guida et al. (2020) . This is a proxy

for the maximum tensile stress experienced by any grain and may in general vary with time to follow an applied loading

pattern. The grainsize of each cell evolves in time according to 

s t+1 
j 

= 

{
X 

t 
j 
s t 

j 
if σ ∗ ≥ σ t 

j 

(
s j−1 , s j , s j+1 

)
s t 

j 
otherwise, 

(1)

where X t 
j 

is a grainsize reduction factor between 0 and 1 that is randomly drawn from a fragment distribution and

σ t 
j 

= σ (s t 
j−1 

, s t 
j 
, s t 

j+1 
) is the maximum stress ratio a cell could take without crushing. Based on physical arguments about

microscopic packing arrangements and grain strength, this function was proposed in Marks and Einav (2017) to take the

form 

σ
(
s t j−1 , s 

t 
j , s 

t 
j+1 

)
= 

(
s t 

j 

s max 

)−3 /w 

exp 

[ 

log 
(
s t 

j 
/ ̄s t 

j 

)2 

2 n 

2 

] 

(2)

where s̄ t 
j 

:= (s t 
j−1 

+ s t 
j+1 

) / 2 is the average neighbourhood grainsize, s max is some fixed maximum grainsize, w is a Weibull

parameter and n is some dimensionless scaling parameter. That this depends only on the grainsizes of itself s t 
j 

and of its

nearest neighbours s t 
j−1 

, s t 
j+1 

, reflects that here each grain in a granular material only interacts with its nearest neighbours.
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The state of the system is an M -dimensional positive real vector s t = (s t 
1 
, s t 

2 
, . . . , s t 

M 

) ∈ R 

M storing the grainsize of each

cell at time t ∈ N , where N = { 0 , 1 , 2 , 3 . . . } are the natural numbers. The evolutionary path of the system is thus represented

by an ordered set of states { s t } t∈ N enumerated by time t ∈ N . This is different from continuous-time-evolution in assuming

that crushing events occur on a single time step and is justified if crushing events are fast compared to the time scale of

stress changes. 

Unless noted otherwise from here onwards, uppercase symbols will be used to denote random variables while lowercase

letters will be used for non-random variables. Boldface letters will be used to denote vector quantities. Calligraphic fonts

will be used to denote sets and probability distribution objects. 

The stochastic lattice model may be formulated as a stochastic process 
{

S t 
}

t∈ N , where the state vectors s t = 

(
s t 

1 
, s t 

2 
, . . . , s t 

M 

)
themselves are promoted to vector-valued (multi-variate) random variables S t = 

(
S t 

1 
, S t 

2 
, . . . , S t 

M 

)
, which follow some high-

dimensional joint probability distribution that accounts for correlations between each variable ( Castiglione et al., 2008;

Sethna, 2011 ). 

Under an externally applied stress ratio σ ∗( t ), the j th cell crushes if the applied load ratio σ ∗ exceeds its critical stress ra-

tio σ t 
j 
. Hence time-evolution is completely characterised by a stress function σ : R 

3 → R that maps the three real grainsizes

s t 
j−1 

, s t 
j 
, s t 

j+1 
in the neighbourhood ( j − 1 , j, j + 1 ) about each j to a real critical stress ratio given by σ t 

j 
= σ (s t 

j−1 
, s t 

j 
, s t 

j+1 
) .

For simplicity, we assume periodic boundary conditions such that the neighbourhood of cell 1 is ( M , 1, 2) and the neigh-

bourhood of cell M is (M − 1 , M, 1) . 

In this work, we are only interested in the event-driven or quasi-static regime where the stress function σ ∗( t ) changes

very slowly compared to crushing events which occur almost instantaneously relative to the time scale of changes in applied

stress and equilibration. Thus at most only a single cell will crush upon any time step, which is why t may be discrete while

fully describing the dynamics. 

The grainsize reduction factors X t 
j 
∼ F X in the time-evolution rule (1) are independent identically distributed random vari-

ables with some probability distribution F X . Here ~ denotes the random variable X t 
j 

being distributed according to the prob-

ability distribution F X termed the fragment distribution . Its exact form does necessarily affect the mathematical structure of

the model itself but the most physically well-motivated candidate is a Weibull distribution as discussed in Section 2.1 . 

2.1. Fragment distribution 

The grainsize reduction factors X t 
j 

follow the same fragment distribution F X , which is described by some probability den-

sity function ρX ( x ) with support over the interval (0,1]. Meanwhile, the probability distribution F of the log-space grainsize

reduction factor R t 
j 
= log X t 

j 
is described by a probability density function f ( r ) with support over the closed interval (−∞ , 0] .

The distribution of fragment sizes from a single grain undergoing brittle fracture was first theoretically investigated

( Gilvarry, 1961 ) on the basis of Griffith crack propagation theory ( Griffith, 1921 ) with the assumption that fracture starts

from the independent activation of randomly distributed flaws in the bulk which propagate to the surface. The resulting

theoretical fragment distribution is a Weibull distribution Weibull (1951) defined by two positive parameters λ, κ in a prob-

ability density function of the form 

ρX (x ) = 

κ
λ

(
x 
λ

)κ−1 
e −(x/λ) κ

1 − e −λ−κ (3) 

with support over (0,1]. 

Discrete element simulations ( McDowell and Harireche, 2002 ) of a single crushing grain produce fragment size distri-

butions consistent with this prediction. While discrete element methods may in principle be applied to small quantities of

granular matter ( Miao et al., 2017; Morrison and Cleary, 2004 ), these algorithms are computationally expensive to scale to

bulk quantities of macroscopic granular matter necessary for a statistical description of grainsize evolution. 

For the special case λ = 1 and κ = 1 , the probability density for each transformed variable R t 
j 

is 

f (r) = 

exp ( r − e r ) 

1 − e −1 
, (4) 

with support over (−∞ , 0] . We shall use this for numerical examples. 

3. Interpretation as a Markovian discrete-time stochastic process 

A joint probability distribution describes the probability distribution of two or more variables. If the variables are inde-

pendent, then the joint probability density function is their product, but this is usually not the case if they are correlated .

The joint probability distribution for S t is uniquely described by a cumulative distribution function 

F t S (s 1 , s 2 , . . . , s M 

) := P 

[
S t 1 ≤ s 1 , S 

t 
2 ≤ s 2 , . . . , S 

t 
M 

≤ s M 

]
, (5) 

where we have used the notation P [ A ] to denote the probability of an event A . Since this function contains all information

about the random variable S t , a rule that gives F t+1 
S 

given F t 
S 

is a deterministic formulation that describes the time-evolution

from an initial distribution F 0 
S 

to a final distribution F t 
S 

. 
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Since this time-evolution rule does not depend on the state of the system at any times before the present time step, this

is a Markovian process with no memory of its previous history beyond the present state S t . 

3.1. Crush zone 

For each cell j and applied stress ratio σ ∗, it is useful to define a crush zone A 

σ ∗
j 

as a region in state space R 

M where cell

j is crushing. 

A 

σ ∗
j := { s ∈ R 

M | σ ∗ ≥ σ
(
s j−1 , s j , s j+1 

)} . (6)

Its set complement ¯A 

σ ∗
j 

= R 

M \ A 

σ ∗
j 

is the non-crushing zone for cell j . 

The indicator function 1 A : R 

M → { 0 , 1 } of a subset A ⊆ R 

M is defined by 

1 A ( s ) := 

{
1 if s ∈ A 

0 if s / ∈ A , 
(7)

in terms of which the time-evolution rule may be linearly written as 

S t+1 
j 

= X 

t 
j S 

t 
j 1 A σ∗

j 

(
S t 

)
+ S t j 1 ¯A σ∗

j 

(
S t 

)
. (8)

Using the identity 1 S + 1 S̄ = 1 , we may factorise this into 

S t+1 
j 

= S t j 

[ (
X 

t 
j − 1 

)
1 A σ

∗
j 

(
S t 

)
+ 1 

] 
. (9)

This is the time-evolution rule that is in the desired form for a Markovian process. 

3.2. Logarithmic transformation 

As the crushing reduces each grainsize S t 
j 

by a random factor of X t 
j 

to yield a new random grainsize X t 
j 
S t 

j 
, it is more

natural to work in log-space so multiplication becomes addition. Thus we redefine the state vector random variable as

�t = (�t 
1 
, �t 

2 
, . . . , �t 

M 

) ∈ R 

M whose components are �t 
j 

:= log S t 
j 
. Kolmogorov (1941) , Halmos (1944) , Epstein (1947) Under

these new coordinates, the multiplicative time-evolution rule (1) may be rewritten as an additive rule 

�t+1 
j 

= 

{
R 

t 
j 
+ �t 

j 
if g ∗ ≥ g 

(
�t 

j−1 
, �t 

j 
, �t 

j+1 

)
�t 

j 
otherwise , 

(10)

where the stress ratio σ ∗ and stress function σ (s j−1 , s j , s j+1 ) have been replaced by their log-space equivalents g ∗ and

g(ψ j−1 , ψ j , ψ j+1 ) , while the fragment reduction factors X t 
j 

have also been transformed into R t 
j 

:= log X t 
j 

each with support

over (−∞ , 0] . 

Note that the inequality g ∗ ≥ g(ψ j−1 , ψ j , ψ j+1 ) is invariant under multiplication by a positive constant, so we are free to

rescale g ∗ and g at our convenience. 

Under these new variables, the time-evolution rule may be rewritten as 

�t+1 
j 

= �t 
j + R 

t 
j 1 A g ∗

j 

( �t ) (11)

where the crushing zone for the j th cell for some load ratio g ∗ has been redefined in terms of log-space coordinates as 

A 

g ∗

j 
:= 

{
ψ ∈ R 

M | g ∗ ≥ g 
(
ψ j−1 , ψ j , ψ j+1 

)}
(12)

where g : R 

3 → R is the log-space stress function that relates log-space grainsizes ψ j−1 , ψ j and ψ j+1 in a neighbourhood

to the critical log-space stress ratio g t 
j 

that will cause crushing on the j th cell. From here on, the terms grainsize and stress

shall be used interchangeably with their log-space analogues. 

To simplify notation, let us define the M -dimensional binary vector-valued function � : R 

M → { 0 , 1 } M that maps from

points in ψ-space to M -dimensional binary vectors whose components are defined by � j ( ψ ) := 1 A g 
∗

j 

(
ψ 

)
so that the time-

evolution equation may be written as 

�t+1 
j 

= �t 
j + R 

t 
j � j 

(
�t 

j 

)
. (13)

Using the Hadamard product notation � defined component-wise between two vectors as ( A �B ) j := A j B j , the time-evolution

equation may then be neatly written in vector form 

(14)
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Fig. 3. Contours of the crush zone boundary g(ψ, ψ̄ ) = (ψ − ψ̄ ) 2 − kψ = g ∗ for constant k = 0 . 005 and applied stress ratios σ ∗ = 2 (blue), σ ∗ = 8 (orange) 

and σ ∗ = 10 0 0 0 (green) using stochastic lattice model parameters w = 3 , n = 0 . 05 , s max = 1 as in Marks and Einav (2017) . The same contours are plotted 

in regular grainsize (s, ̄s ) (left) and logspace grainsize (ψ, ψ̄ ) (right). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

3.3. Crushing zone geometry 

The crushing criterion σ ∗ ≥ σ t 
j 

may be interpreted as defining a zone in the space of states where crushing will

occur, whose geometry is described by Eq. (2) . Moving into log-space with ψ 

t 
j 
= ln s t 

j 
, ψ̄ 

t 
j 
= ln ̄s t 

j 
, k = 6 n 2 /w and g ∗ =

2 n 2 ln (σ ∗/s 3 /w 

max ) , the crushing criterion of Eq. (2) is 

g ∗ ≥ g 
(
ψ 

t 
j , ψ̄ 

t 
j 

)
where g(ψ, ψ̄ ) = 

(
ψ − ψ̄ 

)2 − kψ. (15) 

This quadratic form is in fact the most minimalist two-variable function that respects the symmetries of the system. For each

cell j , the crush zone A 

g ∗
j 

defined in terms of a critical stress function g(ψ j−1 , ψ j , ψ j+1 ) encodes and characterises the stress

state. Example boundaries of this form are plotted as contours in Fig. 3 using the parameterisation ψ̄ = ψ ±
√ 

g ∗ + kψ . 

4. Reformulation for deterministic evolution of distributions 

The stress function g and fragment distribution F uniquely specify the time-evolution of the state �t under some exter-

nal load g ∗. It is then natural to ask how its probability density ρt 
�
(ψ) evolves deterministically over time. This is analogous

to the Fokker–Planck equations for Brownian motion ( Espanol, 2004 ). 

For the stochastic process 
{
�t 

}
t∈ N we have previously formulated, we derive the time-evolution of the joint probability

density function ρt 
�
( ψ ) for the random state vector �t using similar ideas and techniques. 

The joint probability density function 

ρt 
�( ψ ) := 

∂ M F t �

∂ ψ 1 ∂ ψ 2 · · · ∂ ψ M 

( ψ ) (16) 

is a convenient equivalent description of the joint probability distribution for our purposes. For brevity, we will often use

the notations ρt 
�
( ψ ) and P 

[
�t = ψ 

]
interchangeably. 

4.1. Time-evolution operator 

The most general form of the time-evolution rule for a discrete-time stochastic process is 

�t+1 = L 
[
�t 

]
, (17) 

where L is a time-evolution operator that maps from a random variable � t at time t to its time-evolved random variable �t+1 

at time t + 1 . We may equivalently consider its induced functional operator L which maps distributions to distributions, with



E. Huang, B. Marks and I. Einav / Journal of the Mechanics and Physics of Solids 138 (2020) 103897 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the corresponding time-evolution rule 

ρt+1 
�

= L 

[
ρt 

�

]
. (18)

Deriving the explicit form of this operator is the main result of this paper. 

Recalling the time-evolution Eq. (14) , we see by inspection that the time-evolution operator is 

L [ �] := � + R � �( �) (19)

where the components R j of R are i.i.d. random variables with probability density function f ( r ) supported over (−∞ , 0] , 

4.2. Transition probability 

Recall that the stochastic process 
{
�t 

}
t∈ N is Markovian, so 

P 

[ 
�t+1 = ψ 

t+1 | �t = ψ 

t 
] 

= P 

[ 
�t+1 = ψ 

t+1 | �0 = ψ 

0 
, �1 = ψ 

1 
, . . . , �t = ψ 

t 
] 
, (20)

where the notation P [ A | B ] denotes the conditional probability of event A given event B . Hence the time-evolution operator L
may be completely specified by a conditional probability distribution function 



[
ψ | φ]

:= P 

[
�t+1 = ψ | �t = φ

]
(21)

that holds for all t , which we call the transition probability function . Its values represent the probability of a state φ evolving

into state ψ on the next time step. Recalling the form of the time-evolution equation, we proceed to explicitly evaluate 



[
ψ | φ]

:= P 

[
�t+1 = ψ | �t = φ

]
= P 

[
φ + R � �( φ) = ψ 

]
(22)

= P 

[
R � �( φ) = ψ − φ

]
= P 

[ 

M ⋂ 

j=1 

{
R j � j ( φ) = ψ j − φ j 

}] 

(23)

where ∩ denotes set intersection so P [ A ∩ B ] is the probability of both A and B occurring. Note that in this form, the φj

and ψ j symbols are just constants and that the only random variables are the R j which are independent of one another and

thus we may separate the probability as a product 



[
ψ | φ]

= 

M ∏ 

j=1 

P 

[
R j � j ( φ) = ψ j − φ j 

]
. (24)

Recall that there is a crushing zone A 

g ∗
j 

⊆ R 

M for each cell j within which crushing will occur and manifests itself within

each � j ( ψ ) = 1 A j ( ψ ) . Meanwhile, it is easy to show that the proposition 

R j � j ( φ) = ψ j − φ j (25)

is logically equivalent to (
R j = ψ j − φ j ∧ φ ∈ A 

g ∗

j 

)
∨ 

(
ψ j = φ j ∧ φ ∈ Ā 

g ∗
j 

)
(26)

where ∧ denotes and while ∨ denotes or . Noting that the two statements in the parentheses are mutually exclusive, we

have 

P 

[
R j � j ( φ) = ψ j − φ j 

]
= P 

[
R j = ψ j − φ j ∧ φ ∈ A 

g ∗

j 

]
+ P 

[ 
ψ j = φ j ∧ φ ∈ Ā 

g ∗
j 

] 
= f (ψ j − φ j ) 1 A g ∗

j 

( φ) + δ(ψ j − φ j ) 1 ¯A g 
∗

j 

( φ) , (27)

where we have used f as the probability density function of the fragment distribution F and δ is the Dirac delta function,

defined with a probability density 

δ(x ) := 

{
0 if x 
 = 0 

∞ if x = 0 

(28)

such that 
∫ ∞ 

−∞ 

δ(x ) dx = 1 . This finally gives the transition probability as 



[
ψ | φ]

= 

M ∏ 

[ 
f (ψ j − φ j ) 1 A g ∗

j 

( φ) + δ(ψ j − φ j ) 1 ¯A g ∗
j 

( φ) 
] 
. (29)
j=1 
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4.3. Time-evolution of the probability density function 

To recover the actual state on the next time step given a transition probability, we may use the law of total probability

which states that the probability for an event A is 

P [ A ] = 

∑ 

n 

P [ A | B n ] P [ B n ] (30) 

where { B n } is a set of mutually exclusive events which cover the entire sample space. In our case of continuous variables,

we write 

L 

[
ρt ( ψ ) 

]
= ρt+1 ( ψ ) = 

∫ 


[
ψ | φ]

ρt ( φ) d M φ (31) 

where the integral is over all R 

M . Using the transition probability in Eq. (29) , we see that the time-evolution rule is 

ρt+1 ( ψ ) = 

∫ 
d M φ

M ∏ 

j=1 

[ 
f (ψ j − φ j ) 1 A g ∗

j 

( φ) + δ(ψ j − φ j ) 1 ¯A g ∗
j 

φ) 
] 
ρt ( φ) . (32) 

To express this time-evolution rule in a simpler and more intuitive way, for each M -dimensional binary vector θ ∈ {0, 1} M 

that represents a possible crushing configuration we may define a corresponding set 

A 

g ∗

θ
:= { ψ ∈ R 

M | θ j = � j ( � ψ ) ∀ j = 1 , 2 , . . . , M} (33) 

= { ψ ∈ R 

M | 1 A g ∗
j 

( ψ ) = θ j ∀ j = 1 , 2 , . . . , M} (34) 

that represents the region where such a crushing configuration θ = ( θ1 , θ2 , . . . , θM 

) will occur. 

For example, when M = 2 , the set A 

g ∗
00 

denotes the zone of no crushing in all cells, A 

g ∗
01 

denotes the region where cell 1

is not crushing and cell 2 is crushing, A 

g ∗
10 

denotes the region where cell 1 is crushing and cell 2 is not crushing and A 

g ∗
11 

denotes the region where both cells 1 and 2 are crushing. 

This allows us to write 

ρt+1 ( ψ ) = 

∫ 
d M φ ρt ( φ) 

∑ 

θ∈{ 0 , 1 } M 
1 A g ∗

θ

( φ) 
M ∏ 

j=1 

[
f θ j (ψ j − φ j ) δ

1 −θ j (ψ j − φ j ) 
]

(35) 

since the terms in the product are always either f (ψ j − φ j ) if θ j = 1 or δ(ψ j − φ j ) if otherwise θ j = 0 . This naturally leads

us to define a generalised M -dimensional fragment distribution 

γθ( r ) := 

M ∏ 

j=1 

f θ j (r j ) δ
1 −θ j (r j ) (36) 

associated with each crushing configuration θ ∈ {0, 1} M . For example, in the case M = 2 , we simply have γ00 (r 1 , r 2 ) =
δ(r 1 ) δ(r 2 ) , γ01 (r 1 , r 2 ) = δ(r 1 ) f (r 2 ) , γ10 (r 1 , r 2 ) = f (r 1 ) δ(r 2 ) and γ11 (r 1 , r 2 ) = f (r 1 ) f (r 2 ) . The time-evolution equation then

becomes 

ρt+1 ( ψ ) = 

∑ 

θ∈{ 0 , 1 } M 

∫ 
d M φ ρt ( φ) 1 A g ∗

θ

( φ) γθ( ψ − φ) (37) 

which is in the form of a convolution equation 

ρt+1 ( ψ ) = 

∑ 

θ∈{ 0 , 1 } M 

[ (
ρt 1 A g ∗

θ

)
∗ γθ

] 
( ψ ) (38) 

where we have used the convolution operator ∗ defined between any two scalar functions f and g as ( f ∗ g)( ψ ) =∫ 
d M φ f ( φ) g( ψ − φ) . We may also drop the explicit ψ variables to consider the time-evolution operator L as a functional

that maps distributions to distributions so that 

L [ ρ] = 

∑ 

θ∈{ 0 , 1 } M 

(
ρ1 A g ∗

θ

)
∗ γθ = 

∑ 

θ∈{ 0 , 1 } M 
ρ ∗

(
γθ1 A g ∗

θ

)
(39) 

L [ ρ] = ρ ∗
∑ 

θ∈{ 0 , 1 } M 
γθ1 A g ∗

θ

(40) 

where we have used the identity ( f 1 A ) ∗ g = f ∗ (g1 A ) and linearity of convolution. Hence time-evolution is merely a con-

volution 

L [ ρ] = ρ ∗ κg ∗ (41) 
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with some kernel distribution κg ∗ , which for a given stress ratio g ∗ is 

κg ∗ = 

∑ 

θ∈{ 0 , 1 } M 
γθ1 A g ∗

θ

. (42)

Since the crushing zones A 

g ∗
θ

are disjoint sets, κg ∗ (ψ) = γθ(ψ) if and only if ψ ∈ A 

g ∗
θ

for each configuration θ ∈ {0, 1} M .

Hence the kernel is a function defined piecewise over each crush zone. For example, when M = 2 , the kernel in piecewise

form is 

κg ∗ ( ψ ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

δ(ψ 1 ) δ(ψ 2 ) if ψ ∈ A 

g ∗

00 

δ(ψ 1 ) f (ψ 2 ) if ψ ∈ A 

g ∗

01 

f (ψ 1 ) δ(ψ 2 ) if ψ ∈ A 

g ∗

10 

f (ψ 1 ) f (ψ 2 ) if ψ ∈ A 

g ∗

11 
. 

(43)

Note that we name κg ∗ the kernel distribution because L [ δ] = δ ∗ κg ∗ = κg ∗ is the distribution after one time step resulting

from a uniform grainsize distribution of only one grainsize, which is analogous to the Green’s function of an inhomogeneous

differential equation. 1 

This is the incredibly simple form of the operator in the governing time-evolution equation ρt+1 = L 

[
ρt 

]
and is an exact

reformulation of the original stochastic lattice model. If we interpret the probability distributions to actually be the state of

the system, then we have a deterministic formulation of a statistically equivalent theory. 

4.4. Recovery of the empirical distribution 

While we have derived the time-evolution of the M -dimensional probability distribution function ρ( ψ), a test of its

predictive power is to calculate the overall grainsize distribution of the representative volume element, for example by

marginalising . 

Suppose we choose the j th cell and integrate out all the other grainsize variables to obtain the marginal distribution

˜ ρ(ψ j ) for the j th cell. 

˜ ρ(ψ j ) = 

∫ 
d ψ 1 d ψ 2 . . . d ψ j−1 d ψ j+1 . . . d ψ M 

ρ(ψ 1 , ψ 2 , . . . , ψ M 

) . (44)

As no cell is special, this should be the same for all j and hence we define this unique function ˜ ρ(ψ) to be the grainsize

distribution of the entire representative volume element. Upon performing this operation, all the correlations of the M -

dimensional joint distribution function that represent the grainsize fabric of the particles are lost as we map into a one-

dimensional distribution function. This operation is thus irreversible. 

5. Symmetry-simplified model 

If one were to be ignorant of symmetry, the crushing must in general be characterised by M different crushing criteria

g ∗ ≥ g j ( ψ) for each cell j ∈ { 1 , 2 , . . . , M} , where g j also depends on all M components of ψ ∈ R 

M . This high-dimensionality

is computationally undesirable as the phase space scales exponentially in M . Let us exploit these symmetries of the model

to minimise its dimensions. 

5.1. Locality 

The first symmetry is locality – that the time-evolution of the j th cell depends only on a small neighbourhood of nearby

cells. This is physically well-motivated since grains only interact with their nearest neighbours. As described thus far, the

critical stress g j at cell j depends only on ψ j−1 , ψ j , ψ j+1 with 

g j ( ψ ) = g j 
(
ψ j−1 , ψ j , ψ j+1 

)
(45)

for each j = 1 , 2 , 3 , . . . , M. This decomposes each M -dimensional function g j into M three-dimensional functions. This also

means that we only need to track M three-dimensional marginal distributions ̃  ρ j (ψ j−1 , ψ j , ψ j+1 ) obtained by marginalising

out the non-local degrees of freedom. 

5.2. Translational invariance 

With periodic boundary conditions in j , the second symmetry of the system is translational invariance – that any cyclic

permutation of the cells will result in the same model. In other words, shifting all the cells by a constant number of cells

leaves the system’s time-evolution rule unchanged. That is, for any two cells i, j ∈ { 1 , 2 , . . . , M} , their crushing stress ratios
1 e.g. the deflection due to a point load on a beam is the Green’s function of the Euler-Bernoulli beam equation. 
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g i ( ψ i −1 , ψ i , ψ i +1 ) and g j 
(
ψ j−1 , ψ j , ψ j+1 

)
are in fact from the same function g = g i = g j . In terms of distributions, trans-

lational invariance means that regardless of which cell j is chosen, we will still get the same three-dimensional marginal

distribution ˜ ρ( ψ i −1 , ψ i , ψ i +1 ) = ˜ ρ
(
ψ j−1 , ψ j , ψ j+1 

)
= ˜ ρ( ψ 1 , ψ 2 , ψ 3 ) . Thus we only need to keep track of a three-dimensional

scalar function. 

5.3. Cell reflection symmetry 

The third symmetry is that the system is invariant under reversing the order of the cells, as there is no preferred direction

in the labelling. This manifests itself as the invariance of the stress function under the reversal of cells with 

g(ψ j−1 , ψ j , ψ j+1 ) = g(ψ j+1 , ψ j , ψ j−1 ) . (46) 

This is important since any such function may be reparameterised in terms of ψ j and an “average” neighbour grainsize

ψ̄ j = χ(ψ j−1 , ψ j+1 ) = χ(ψ j+1 , ψ j−1 ) for any symmetric function χ such that 

g 
(
ψ j , ψ̄ j 

)
= g 

(
ψ j−1 , ψ j , ψ j+1 

)
. (47) 

To be consistent with Marks and Einav (2015, 2017) where s̄ j := 

(
s j−1 + s j+1 

)
/ 2 , we may enforce ψ̄ j = log ̄s j so that 

ψ̄ j = log 

(
e ψ j−1 + e ψ j+1 

2 

)
. (48) 

These symmetries are reflected in the probability density function in that we only need a 2D probability distribution func-

tion ρt 
(
ψ, ψ̄ 

)
that evolves according to 

ρt+1 
(
ψ, ψ̄ 

)
= L 

[
ρt 

](
ψ, ψ̄ 

)
(49) 

for some linear time-evolution operator L . 

Note that the system has no time-reversal symmetry since crushing is irreversible. 

5.4. Simplified two-dimensional model 

With these symmetries in mind, it should be sufficient to represent the state of the system using a 2-dimensional joint

distribution function ρ
(
ψ, ψ̄ 

)
which evolves according to the exact Eq. (40) . It is a powerful approximation to use the same

time-evolution rule with dimension M = 2 that would have the same statistical properties as that of the large model with

M → ∞ . This is justified since in the slow limit of event-driven dynamics, there is only at most one crushing event at each

time step and every interaction is a local interaction. 

This satisfies our goal of finding a simple and computationally scalable deterministic continuum model for comminution

that reproduces the behaviour of the stochastic lattice model. 

Let us explicitly write down the symmetry-simplified two-dimensional model. Recall that the functional time-evolution

rule is ρt+1 = ρt ∗ κg ∗ . By the symmetry arguments made in the previous section, we may take M = 2 and rename our grain-

size variables as ψ 1 = ψ and ψ 2 = ψ̄ to be the parameters of the state function ρt (ψ, ψ̄ ) . The binary vectors describing

the possible crushing states are then θ ∈ {00, 01, 10, 11}. The time-evolution may then be written as 

(50) 

where the kernel distribution κg ∗ for a given externally applied stress g ∗ may be piecewise defined over each crushing zone

in terms of generalised fragment distributions by 

κg ∗ (ψ, ψ̄ ) := 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

δ(ψ) δ( ψ̄ ) if (ψ, ψ̄ ) ∈ A 

g ∗

00 

δ(ψ) f ( ψ̄ ) if (ψ, ψ̄ ) ∈ A 

g ∗

01 

f (ψ) δ( ψ̄ ) if (ψ, ψ̄ ) ∈ A 

g ∗

10 

f (ψ) f ( ψ̄ ) if (ψ, ψ̄ ) ∈ A 

g ∗

11 

(51) 

where f is the fragment distribution with support over (−∞ , 0] , δ is the Dirac delta function and the regions are explicitly

given by 

A 

g ∗

00 
= { (ψ, ψ̄ ) ∈ R 

2 | g ∗ < g(ψ, ψ̄ ) and g ∗ < g( ψ̄ , ψ) } (52) 

A 

g ∗

01 
= { (ψ, ψ̄ ) ∈ R 

2 | g ∗ < g(ψ, ψ̄ ) and g ∗ ≥ g( ψ̄ , ψ) } (53) 

A 

g ∗

10 
= { (ψ, ψ̄ ) ∈ R 

2 | g ∗ ≥ g(ψ, ψ̄ ) and g ∗ < g( ψ̄ , ψ) } (54) 

A 

g ∗ = { (ψ, ψ̄ ) ∈ R 

2 | g ∗ ≥ g(ψ, ψ̄ ) and g ∗ ≥ g( ψ̄ , ψ) } , (55) 

11 
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Fig. 4. The crushing zones for the two-dimensional (ψ, ψ̄ ) simplified model where the cell grainsize ψ and neighbour grainsize ψ̄ are treated equally. 

The blue solid line encloses the A 

g ∗

10 
zone where the ψ cells will crush while the red dashed line encloses the A 

g ∗

01 
zone where the ψ̄ cells will crush. The 

overlapping zone A 

g ∗

11 
is the zone where both will crush. As the applied load g ∗ is increased, these crush zones expand and expel any probability density 

ρ(ψ, ψ̄ ) into the A 

g ∗

00 
no crush zone. Note the relative positions of the zones and how they are connected. Under slow crushing the state never enters the 

A g 
∗

11 
zone except along the line ψ = ψ̄ . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

where the stress function g(ψ, ψ̄ ) takes the form of Eq. (15) . A schematic plot of these regions is shown in Fig. 4 . 

The experimentally observable grainsize distribution ˜ ρ(ψ) is obtained by marginalising out the ψ̄ with 

˜ ρt (ψ) = 

∫ ∞ 

−∞ 

d ψ̄ ρt (ψ, ψ̄ ) . (56)

Note that in general, the externally applied stress g ∗ = g ∗(t) varies as a function of time and defines the load path of the

system. From these equations alone, it is enough to construct efficient numerical algorithms that deterministically reproduce

the statistics of the stochastic lattice model. 

6. Fast numerical implementation 

The simplified model was numerically implemented as a discrete convolution 

ρt+1 (ψ, ψ̄ ) = 

(
ρt ∗ κg ∗

)
(ψ, ψ̄ ) . (57)

For a given load ratio g ∗ and fragment distribution f ( ψ), the kernel κg ∗ is defined piecewise for each region A 

g ∗
00 

, A 

g ∗
01 

,

A 

g ∗
10 

and A 

g ∗
11 

. In numerical implementations, the grainsize ψ may be discretised and truncated into N bins centred at

ψ 1 , ψ 2 , . . . , ψ N which range linearly from ψ min = ψ 1 to ψ max = ψ N . The state ρt is then discretised into an N × N dis-

crete probability mass function with values p t 
i j 

. Meanwhile, the fragment distribution would also be analogously discretised

into components f j := 

∫ φ j 

φ j−1 
dφ f (φ) , where the index j runs from 1 to N , although f j = 0 if φj ≥ 0 to ensure that grainsizes

only reduce in size. Similarly the kernel distribution becomes a 2D array K 

g ∗ with elements given by 

K 

g ∗

i, j 
:= 

∫ φi 

φi −1 

∫ φ j 

φ j−1 

d φ d ̄φ κg ∗
(
φ, φ̄

)
. (58)

The sets A 

g ∗
00 

, A 

g ∗
01 

, A 

g ∗
10 

and A 

g ∗
11 

then become sets of points rather than regions in R 

2 and correspondingly the kernel distri-

bution also becomes discretised as 

K 

g ∗

i, j 
:= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

δi δ j if (i, j) ∈ A 

g ∗

00 

δi f j if (i, j) ∈ A 

g ∗

01 

f i δ j if (i, j) ∈ A 

g ∗

10 

f i f j if (i, j) ∈ A 

g ∗
. 

(59)
11 
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Fig. 5. Visualisation of the two-dimensional fragment distribution kernel K g 
∗

i, j 
in Eq. (63) as a fragment distribution coming from different ( i, j ) cells marked 

with an X shown for crush zones A 

g ∗

01 
, A 

g ∗

10 
and A 

g ∗

11 
respectively (left to right). The probability p i,j at cell ( i, j ) becomes zero at the next time step and is 

distributed according to this two-dimensional fragment distribution as shown depending on which zone it is in. 

 

 

 

 

 

 

 

 

 

 

 

where the Dirac delta functions become discretised as 

δ j = 

{
1 if j = 0 

0 if j 
 = 0 . 
(60) 

The time-evolution rule thus also becomes a discrete convolution 

(61) 

To recover the marginal distribution for ρ� ( ψ), one simply sums over the j indices representing the ψ̄ variables to get 

p t i := 

N ∑ 

j=1 

p t i, j , (62) 

which is the binned form of the experimentally observable grainsize distribution ˜ ρ(ψ) . 

6.1. Simulation details 

The cutoffs for the range of grainsizes ψ to consider were arbitrarily chosen at ψ min = −6 and ψ max = 1 , such that the

grainsize may vary over three orders of magnitude. Of course, the model can be simulated over an even greater range at a

cost of either speed or resolution. 

If the crushing is sufficiently slow, we may make the smoothing approximation that the generalised fragment distribution

is 

K 

g ∗

i, j 
:= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

δi δ j if (i, j) ∈ A 

g ∗

00 

δi f j if (i, j) ∈ 

¯A 

g ∗
00 

and i > j 

f i δ j if (i, j) ∈ 

¯A 

g ∗
00 

and i < j (
δi f j + f i δ j 

)
/ 2 if (i, j) ∈ 

¯A 

g ∗
00 

and i = j. 

(63) 

The mathematical motivation behind this approximation is that when the crushing zones advance slowly from the unloaded

state, every point in R 

2 starts off in the non-crushing zone A 

g ∗
00 

as shown in Fig. 4 . As the load g ∗ is increased, the crushing

zone slowly expands but the point must at some point be inside one of the single-cell crushing regions A 

g ∗
01 

or A 

g ∗
10 

rather

than the two-cell crushing zone A 

g ∗
11 

. The only exception is the unlikely case ψ = ψ̄ , which is usually an artefact of coarse

binning, in which case it is sensible to take the “average” fragment distribution in the last case when i = j. This is visualised

in Fig. 5 for each of the non-trivial cases. 

The physical justification is that under slow crushing, cells may only crush one at a time so the only crushing configura-

tions allowed are 00 which is no crushing, 01 which is the second cell crushing only and 10 which is the first cell crushing

only. The crushing state 11 is forbidden under slow crushing as two adjacent cells are not allowed to crush at the same

time as one must crush before the other. 



E. Huang, B. Marks and I. Einav / Journal of the Mechanics and Physics of Solids 138 (2020) 103897 13 

Fig. 6. Density plot of the joint probability density function and its associated marginal distributions ˜ ρ(ψ) above it and the overall grainsize distribution 

as a CDF for a bivariate distribution. The left plots are the initial distribution and the right plot is time-evolved by slow crushing. The red curves denote the 

extent of the crushing zones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2. Mixing 

When initialising the cells, it is useful to be able to model complete mixing when the � and �̄ random variables become

completely independent of one another while still retaining the same overall distribution ˜ ρ(ψ) . When this is the case, the

distribution function is separable into a product distribution 

ρ
(
ψ, ψ̄ 

)
= ρ�(ψ) ρ�̄ ( ψ̄ ) , (64)

where ρ� and ρ�̄ are marginal probability distributions for � and �̄ respectively. This independence is lost when crushing

occurs and the two variables � and �̄ become correlated in a complex way described by the joint distribution. This encodes

the grainsize fabric or arrangement of the grains. 

Note that these two distributions are not identical even in the independent case. However, when they are independent,

they are related by a transformation based on the form of the averaging function. When one uses the geometric mean on s ,

which is the arithmetic mean on ψ with 

�̄ j := 

� j−1 + � j+1 

2 

, (65)

the distribution for �̄ is simply 

ρ�̄ ( ψ̄ ) = 

∫ 
dψ 2 ρ�(ψ) ρ�(2 ψ̄ − ψ) . (66)

When the relationship is more complicated, for instance in our canonical choice of �̄ = log S in Eq. (48) , the transformed

distribution may in general be computed from the cumulative probability distribution from first principles. This is shown in

Fig. 6 for an example of initially gap-graded distribution and a time-evolved distribution. 

7. Numerical simulations and results 

We have in the above sections resolved the homogenised evolution Eq. (50) that analytically describes the smooth limit

of the stochastic lattice model, as well as described its fast numerical deterministic implementation through Eq. (61) . Here,

results from this newly resolved continuum model are evaluated against the equivalent stochastic lattice model simulations.

To demonstrate the success of the new formulation, in this section we illustrate that the newly established continuum model

effectively captures the same grainsize dynamics as in the stochastic lattice model for entirely different initial distributions.
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Fig. 7. Crushing from a uniformly graded initial grainsize distribution modelled using the stochastic lattice model and the simplified model. (a) Comparison 

of the state evolution the stochastic lattice model (top) and the simplified continuum model (bottom) using the same parameters for a uniformly-graded 

initial grainsize distribution. (b) CDF of the grainsize distribution evolving under increasing applied stress ratio σ ∗ for the stochastic lattice model. (c) CDF 

of the grainsize distribution evolving under increasing applied stress ratio σ ∗ for the simplified deterministic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the ability of the stochastic lattice model to capture the right comminution dynamics in closed experimental systems

has already been shown ( Guida et al., 2020 ), the comparison below essentially illustrates the power of the newly established

continuum comminution model. 

Specifically, simulations were performed using the fast numerical deterministic implementation for a variety of differ-

ent grainsize distributions using the same parameters as those for the stochastic lattice model in Marks and Einav (2017) .

The time-evolution of the grainsize distributions was then compared against that of the stochastic lattice model. Note

that although the evolution rules of the deterministic model are symmetric, here we start off the simulations with a

non-symmetric initial two-dimensional joint distribution over ( s 1 , s 2 ) to match the initial distribution of the stochas-

tic lattice model model over (s, ̄s ) . Given an initial grainsize distribution ρ0 
S 
(s ) , this non-symmetric initial state can

be taken as ρ0 (s 1 , s 2 ) = ρ0 
S 
(s 1 ) ρ

0 
S̄ 
(s 2 ) with ρ0 

S̄ 
(s 2 ) = 

∫ 1 
0 ds 2 ρ0 

S 
(s ) ρ0 

S 
(2 s 2 − s ) as the distribution of the neighbour-average

grainsize S̄ = (S − + S + ) / 2 which is an average of two independent random variables S − and S + identically distributed

as ρ0 
S 
(s ) , which is similar to (66) . The physical interpretation for the independence of these variables as an ini-

tial condition means that the material starts off as a fabric of grains that are completely mixed with uncorrelated

neighbours. 

We start by evaluating the model’s ability to capture the evolution of the grainsize distribution under uniaxial com-

pression of initially uniformly graded medium (that is, an initially monodisperse granular sample). As shown on Fig. 7
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Fig. 8. Crushing from a gap-graded initial grainsize distribution modelled using the stochastic lattice model and the simplified model. (a) Comparison of 

the state evolution the stochastic lattice model (top) and the simplified continuum model (bottom) using the same parameters for a bivariate gap-graded 

initial grainsize distribution. (b) CDF of the grainsize distribution evolving under increasing applied stress ratio σ ∗ for the stochastic lattice model. (c) CDF 

of the grainsize distribution evolving under increasing applied stress ratio σ ∗ for the simplified deterministic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the model predicts the same dynamics that the stochastic lattice model predicts, both in terms of the progression of the

two-dimensional joint distribution over grainsize and local-average grainsize in Fig. 7 a and the experimentally measurable

marginal grainsize distribution in Fig. 7 b. In particular, Fig. 7 b reveals the same sort of evolution that many previous ex-

perimental studies revealed in the past, as described in Guida et al. (2020) . We also note the small qualitative differences

in the way fragments are generated in Fig. 7 a, where unlike the deterministic continuum model, in the stochastic model

they do not purely flow downwards or leftwards. This is because the stochastic model is slightly influenced by infrequent

small localised crushing avalanches during individual event-driven computational steps, where the crushing of one cell may

trigger immediate crushing of neighbouring cells. 

As the second challenge, the initial grainsize distribution is taken to be gap-graded (meaning, an assembly containing

only two distinct grainsizes). For example, the size ratio between the large and small particles is here taken to be 10,

and each species initially contributes 50% to the overall volume. Similar crushing tests were carried out experimentally

by Zhang and Baudet (2014) . As shown on Fig. 8 , again our newly established continuum model predicts almost identical

dynamics that the previously validated stochastic lattice model described, both in terms of the two-dimensional joint dis-

tribution on Fig. 8 a and the marginal grainsize distribution on Fig. 8 b, the latter consistent with the experimental data of

Zhang and Baudet (2014) . Again, the minor differences in Fig. 8 a are due to localised crushing avalanches in the stochastic

model. 
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Fig. 9. Crushing from a well-graded initial grainsize distribution modelled using the stochastic lattice model and the simplified model. (a) Comparison of 

the state evolution the stochastic lattice model (top) and the simplified continuum model (bottom) using the same parameters for a well-graded initial 

grainsize distribution. (b) CDF of the grainsize distribution evolving under increasing applied stress ratio σ ∗ for the stochastic lattice model. (c) CDF of the 

grainsize distribution evolving under increasing applied stress ratio σ ∗ for the simplified deterministic model. 

 

 

 

 

 

 

 

 

 

As the third and final example, we study the grainsize dynamics of an initially well-graded sample (meaning, an initially

highly polydisperse medium with many different grainsizes varying over several orders of grainsize magnitudes). As Fig. 9

illustrates, again our newly established continuum model predicts the same dynamics as the previously validated stochastic

lattice model predicts, both in terms of the two-dimensional joint distribution seen in Fig. 9 a and the marginal grainsize

distribution in Fig. 9 b. For such cases with initially highly polydisperse media, the grainsize distribution evolves only in a

limited way compared with the other two cases above. 

Upon qualitative inspection of these plots, it is easy to see that the model well-reproduces the behaviour of the stochastic

lattice model. The discrepancies may have arisen from truncation errors with the stochastic lattice model simulation, which

was run at a finite discretisation of grainsize and finite time step such that not all crushing events were exactly isolated

from adjacent neighbours crushing at the same time step. As such, the newly established continuum comminution model

can in fact be regarded as the continuous analog of the experimentally validated stochastic lattice model. 

8. Discussion 

Below we discuss a few additional aspects related to the newly derived continuum comminution model. 
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8.1. Extensions to include rate effects 

When in situations where the modelling of fast loading is desired, these effects may be considered by a simple superpo-

sition of the slow crushing kernel with the fast crushing kernel. 

K 

g ∗

i, j 
= (1 − α) K 

g ∗, slow 

i, j 
+ αK 

g ∗, fast 
i, j 

(67)

where α ∈ [0, 1] is a dimensionless parameter that describes the rate of loading. The case α = 0 is that of slow loading and

α = 1 is that of extremely fast-loading. The fast-loading kernel is simply the independent fragment distribution 

K 

g ∗

i, j 
:= 

{
δi δ j if (i, j) ∈ A 

g ∗

00 

f i f j if (i, j) ∈ 

¯A 

g ∗
00 

. 
(68)

If the crushing is done infinitesimally slowly each crushing event should happen one at a time. Slow crushing causes

the probability distribution function to be correlated since the kernel is not separable unlike that of fast or mixed crushing

which may be separated into ρ(ψ, ψ̄ ) = ρ�(ψ) ρ�̄ ( ψ̄ ) . 

8.2. Computational time and complexity 

In general, the time complexity of the convolution algorithm is O ( N 

4 ) by inspection of the discrete convolution

Eq. (61) for N × N grainsize bins. 

For the case of slow loading however, since the crushing zone advances very slowly, each time step will only have a

very small number of new cells in the crushing zone, which for a correctly chosen time step will be restricted to near the

boundary. The area of the crush zone is of order O ( N 

2 ), while the number of bins on the edge of the boundary is of order

O ( N ). The convolution only needs to be done on these cells, which takes O ( N 

2 ) time. This leads to a time-complexity of

O ( N 

3 ) for each time step. The space complexity is of course just O ( N 

2 ) for both cases since it requires the storage of N × N

arrays. 

8.3. Generalisation to open system 

When the original stochastic lattice model was introduced, it was hoped that segregation, mixing and comminution may

all be incorporated into a single differential equation that describes the system. While mixing and segregation were well-

described analytically with partial differential equations, this was not possible with comminution. 

Since we now know that the rule for comminution is a convolution equation linear in some probability density function,

we may apply similar techniques to those for solving linear partial differential equations. In fact, the system in continuous

time may be equivalently formulated as non-local partial differential equations, an active area of mathematical research

( Bucur and Valdinoci, 2016 ). 

Nevertheless, the clarity of the simplified model and its favourable scaling with low memory requirements should allow

it to be scalable into a larger volume of space and time. 

As such, representing the system would require a function ρ(x, y, z, ψ, ψ̄ ) . This is not inconceivable as the ρ(ψ, ψ̄ )

at each volume element may be binned as an N × N array and so still scales linearly in the volume to be simulated.

To generalise the model to three spatial dimensions, one possible approach would be to rephrase the breakage criterion

g ≤ g ∗ in terms of stress tensor invariants. Using principles of fracture mechanics, the Weibull stress constant embed-

ded in the crushing function g can be expressed using the particle crushing energy, as derived in Zhang et al. (2016) .

On the other hand, the scalar stress function g ∗ can be replaced by stress invariants to calculate the energy available

for breakage as motivated by the breakage mechanics theory ( Einav, 20 07a; 20 07b ). Other improvements may seek to

include the effects of kinetic stress for gaseous-fluid dynamic regimes, an idea that requires future examination. Fi-

nally, the derivation of a combined model to include segregation and mixing will also be the natural extension of this

work. 

9. Conclusion 

In conclusion, we have mobilised mathematical tools and arguments to derive a continuum model for comminution that

reproduces the behaviour of a physically based stochastic lattice model. While the macroscopic equations of fluid mechanics

can be derived by coarse-graining the microscopic equations of classical mechanics, and while the same equations may also

be derived by coarse-graining lattice models ( Shi and Sader, 1998 ), this paper has demonstrated that the grainsize dynamics

of brittle granular media may also be understood by coarse-graining stochastic lattice models. 

We achieved this by redefining the original stochastic lattice model of comminution as a stochastic process in M -

dimensional Euclidean space and deriving the time-evolution rule for its probability distribution function to give a simple

convolution operation with a kernel that is a generalised fragment distribution. Exploiting the symmetries of the stochas-

tic lattice model in its crushing zone geometry that manifests its crushing criterion, we have derived a two-dimensional

time-evolution equation that defines a deterministic and grainsize-continuous model. 
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While a small set of fields in space and time such as stress, density, elastic strain and bulk velocity can statistically cap-

ture the macroscopic state of a solid or fluid continuum, no finite set of parameters may sufficiently describe the grainsize

if one wishes to describe the distribution F ( s ) of grainsizes s that is varying continuously in space and time. Naïvely, adding

an extra dimension may seem to solve the problem but this is complicated by the fact that macroscopic behaviour is highly

sensitive to the microscopic arrangement of the constituent grains (that we termed the grainsize fabric in this paper). 

The ultimate model should be generalisable to describe open comminution processes that are coupled with the partial

differential equations for segregation and mixing ( Marks and Einav, 2015; 2017 ). Mathematically describing the evolution of

a representative volume of crushable granular media containing a statistically significant number of grains at the level of

grainsize distributions under varying stress conditions is the subject of this paper and a step towards such a model. 
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Appendix A. Notation 

Table A.1 documents the list of symbols used in this paper. All physical quantities have been normalised to be non-

dimensional. 
Table A1 

List of Symbols. 

Symbol Name Description 

1 A Indicator function Function that returns 1 if argument is in A and 0 otherwise 

A Set A set of points in some space 

A 

σ ∗
θ

Crush zone θ Set of grainsize states which will crush under applied stress ratio σ ∗

A 

g ∗

θ
Crush zone θ Set of grainsize states which will crush under logspace applied stress ratio g ∗

f ( r ) PDF for logspace fragment distribution Probability density function for the logspace grainsize reduction random 

variable R 

f i Discretised logspace PMF Components of probability mass function for fragment distribution 

F ( x ) Cumulative distribution function Monotonic function from 0 to 1 that defines a probability distribution 

F Logspace fragment distribution Probability distribution for logspace grainsize reduction factor random 

variables R t 
j 

F X Fragment distribution Probability distribution for grainsize reduction factor random variables X t 
j 

g Logspace stress function Logspace stress function 

g ∗ Logspace applied stress ratio Applied stress in logspace 

i Discretisation index Integer index for enumeration of continuum discretisation 

j Cell index Integer index for enumeration of stochastic lattice model cells 

k Rescaling constant Constant for logspace crushing criterion 

K g 
∗

i, j 
Logspace crushing kernel Kernel function for convolution 

K g 
∗ , slow 

i, j 
Slow logspace crushing kernel Slow crushing kernel 

K g 
∗ , fast 

i, j 
Fast logspace crushing kernel Fast crushing kernel 

L Time-evolution vector operator Discrete-time operator that maps logspace grainsize vector state to new 

logspace grainsize vector state for the next time step 

L Time-evolution functional operator Discrete-time operator that maps logspace grainsize probability density 

function to new logspace grainsize probability density function for the 

next time step 

s Grainsize state Array of grainsizes for each cell 

( continued on next page ) 
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Table A1 ( continued ) 

Symbol Name Description 

M Model size Number of stochastic lattice model cells 

n Scaling parameter For the stochastic lattice model crushing criterion 

N New grid size Grid size of the new model discretisation 

N Natural numbers The set of natural numbers { 0 , 1 , 2 , . . . } 
O Big-O notation Asymptotic notation for algorithms 

P [ A ] Probability Probability of some event A 

p t 
i, j 

Discretised probability mass Probability mass function terms. 

R Logspace grainsize reduction Random variable R = log X with support −∞ < R ≤ 0 

R t 
j 

Logspace grainsize reduction Random variable R t 
j 
= log X t 

j 

R Real numbers The set of real numbers 

R 
M Euclidean space M -dimensional Euclidean space 

r Logspace grainsize reduction value Value of logspace grainsize reduction r ≤ 0 

s Grainsize Grainsize value for a model cell 0 < s ≤ s max 

s t 
j 

Cell grainsize Grainsize of cell j at time t 

S Grainsize random variable Random variable for a cell grainsize 

S t 
j 

Cell grainsize random variable Random variable for grainsize of cell j at time t 

S t Grainsize state at time t Random variable for array of grainsizes at time t 

s̄ Neighbourhood grainsize Average of neighbouring cell grainsizes 

s̄ t 
j 

Neighbourhood grainsize Average of neighbouring cell grainsizes around cell j at time t 

s max Maximum grainsize Reference maximum grainsize 

t Time Integer time step index 

w Crushing criterion parameter Weibull parameter for the stochastic lattice model crushing criterion 

x Grainsize reduction factor Value 0 < x ≤ 1 by which grainsize of a cell reduces after a crushing event 

X Grainsize reduction factor Random variable 0 < X ≤ 1 that is the factor by which the grainsize of a cell 

reduces in a crushing event 

X t 
j 

Grainsize reduction factor Random variable for grainsize reduction factor in cell j at time t 

γ θ ( r ) M -dimensional fragment distribution Generalized fragment distribution for many cells 

δ( x ) Dirac delta function The unit impulse 

δij Kronecker delta function 1 if i = j, 0 otherwise 

θ Binary vector A binary-valued vector for labelling crush zones 

� Binary function Maps from grainsize vector states to 0 if not crushing or 1 if crushing 

κg ∗ Crushing kernel For simplified model 

κ Fragment distribution shape parameter Shape parameter for Weibull fragment distribution 

λ Fragment distribution scale parameter Scale parameter for Weibull fragment distribution 

ρ(ψ, ψ̄ ) Model PDF state Probability density function over grainsize and neighbourhood average 

grainsize that serves as the state in the new model 

ρX Fragment PDF Fragment distribution probability density function ρX ( x ) 

ρt 
� PDF of logspace grainsize state Probability density function of logspace grainsize configuration at time t 

˜ ρ(ψ) Marginal distribution The probability density function marginalised over other variables 

σ Stress function Stress function proxy for maximum tensile stress experienced by any grain 

σ ∗ Applied stress ratio Ratio of applied stress to stress required for first crushing 

φ Dummy logspace grainsize Dummy logspace grainsize used for derivations 

ψ Logspace grainsize Logspace grainsize ψ = log s 

ψ 

t 
j 

Logspace grainsize Logspace grainsize of cell j at time t 

ψ Logspace grainsize state Array of logspace grainsize values that defines a state in the stochastic 

lattice model 

� Logspace grainsize random variable Random variable for logspace grainsize 

�t 
j 

Logspace grainsize random variable Random variable for logspace grainsize in cell j at time t 

ψ̄ Logspace neighbourhood grainsize Average logspace grainsize of neighbouring cells 

�t Logspace grainsize random vector Array of random variables for logspace grainsize in cells at time t 

~ Distributed according to X ∼ F X means random variable X is distributed according to probability 

distribution F X . 
∧ And Logical AND operator 

P [ A | B ] Conditional probability Probability of event A given event B 
∗ Convolution Convolution operator 

:= Define x := y means x is defined as y 

∀ For all Logic operator 

∈ In Set inclusion, e.g. a ∈ A means element a is in set A . 

� Hadamard product Element-wise product of vectors 

log Natural logarithm Logarithm with base e 


∈ Not in Negation of ∈ 
∨ Or Logical OR operator 

{.} Set Set of elements 

� Set minus A \ B := { x ∈ A | x / ∈ B} 
(v 1 , v 2 , . . . , v N ) Vector or array Ordered set of elements 
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