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In this work we propose a micro to macro compressibility model to predict the deformation of soils with 

crushable grains subjected to one-dimensional compression loading. The grain size distribution of the 

media is described by a new index I G defining the degree of polydispersity. I G is linked to the evolution 

of the irreversible component of the deformation, while the reversible part is defined through the poroe- 

lasticity framework. The model is then applied to experimental data on monodisperse and polydisperse 

sand samples. Finally, this newly proposed compressibility model is coupled with an existing heterarchi- 

cal multi-scale model that is able to represent how the grain size distribution evolves as a function of 

stress due to particle scale micromechanics. This combined heterarchical-compressibility model is shown 

to capture reasonably well the complex simultaneous interactions between the way the porosity, stress, 

and grain size distribution evolve for both initially monodisperse and polydisperse sands. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Granular media such as sand, gravel and snow are common in

oth nature and industrial processes. Their mechanical behavior is

ffected by the intrinsic properties of individual grains, such as

heir shape and roughness, their chemical and physical composi-

ion and the grain size distribution. Experimental evidence indi-

ates that grain size and shape are two important properties that

nfluence the macroscopic density and mechanical behavior of the

edium ( Cubrinovski and Ishihara, 2002; Göncü and Luding, 2013;

antamarina and Cho, 2004 ), therefore playing a fundamental role

n controlling soil deformation due to loading. These micro-scale

eatures reflect the history of the material: its formation, trans-

ortation and deposition environments. 

The concept of relative density gives an indication of how

ensely packed a material is compared to its intrinsic minimum

nd maximum values, which are practically determined using stan-

ard procedures as in ASTM-D4254 (2006) . Determining these

ensity limits precisely is an ongoing issue due to large uncertain-

ies associated with their measurement and sensitivity of the test

rocedures ( Oda, 1972; Youd, 1973 ). Density state is a result of the

nter-particle network of forces generated, and of the nature of the
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nteractions ( Donev et al., 2005 ), mainly affected by grain stiffness,

ize, shape, and surface texture. 

However, the fact that the minimum and maximum density are

trongly correlated to the grain size distribution is experimentally

ell established: a monodisperse assembly – composed of parti-

les with the same size – leads in general to a lower density state

ompared to a polydisperse one, since grains with a larger range

f sizes can fill the inter-particle voids more efficiently. There-

ore, the greater the range of sizes, the greater the density and

he lower the minimum and maximum void ratios ( e.g. Burmister,

938; 1948; Cubrinovski and Ishihara, 2002; Miura et al., 1997;

akata et al., 2001a; Peronius and Sweeting, 1985; Youd, 1973 ).

arious experimental and theoretical studies describe bi-disperse

acking, which highlight that in the presence of approximately 30%

nes, the material reaches its maximum density ( Cubrinovski and

shihara, 2002; Dias et al., 2004; Farr and Groot, 2009; Lade et al.,

998; Wood and Maeda, 2008; Yu and Standish, 1988 ). Here, how-

ver, we are concerned with the more general problem of polydis-

ersed materials. 

In addition to the role of polydispersity, empirical evi-

ence ( Kolbuszewski and Frederick, 1963 ) shows that for monodis-

erse granular assemblies, the maximum and minimum densities

end to decrease with increasing particle size. This is attributed

o a particle shape effect, where lar ger particles tend to be more

ounded due to their formation via natural processes ( Youd, 1973 ).

lternatively, this may be due to the effect of subtle surface forces,

uch as static electricity and adhesion ( Miura et al., 1997 ). 
g micro grainsize polydispersity to macro porosity, International 
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Table 1 

Grain size distribution properties of five mixes of grains from ( Youd, 1973 ). 

GSD properties 

Mix d min d max �d D 50 C u I GS s̄ I G 
[mm] [mm] [mm] [mm] [-] [-] [-] [-] 

1 0.50 0.95 0.45 0.63 1.4 0.05 0.71 1.08 

2 0.25 1.88 1.63 0.25 2.5 0.14 0.37 1.40 

3 0.12 3.72 3.60 0.09 4.3 0.21 0.15 2.14 

4 0.08 5.04 4.96 0.05 8.0 0.24 0.10 2.72 

5 0.13 1.91 1.78 0.28 4.3 0.15 0.31 1.65 
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Many authors have proposed empirical equations, based on a

wide set of experimental data, to describe the increase of the min-

imum and maximum void ratio with a decrease of particle spheric-

ity ( e.g. Cho et al., 2006; Cubrinovski and Ishihara, 2002; Nakata

et al., 2001a ). Similar observations have been made for particle

elongation, which was found ( Fraser, 1935; Jia and Williams, 2001 )

to be inversely proportional to the packing density. Irregularity at

all three morphological length scales – elongation (macro), angu-

larity (meso) and texture (micro) – hinders particle mobility and

thus inhibits the formation of denser assemblies. 

Some researchers ( e.g. Man et al., 2005; Ogarko et al., 2014;

Torquato and Stillinger, 2010; Torquato et al., 20 0 0 ) have investi-

gated through simulations the upper and lower bound limits of

density for hard spherical or even euclidean 3D shaped particles

packing, and successfully reproduced prominent structural proper-

ties, especially at higher densities. 

The density of a granular material, bounded between its intrin-

sic maximum and minimum values, reflects the physical state and

the loading history of the medium: adopting standard procedures

( ASTM-D4254, 2006 ) a dried pluviated material would have a den-

sity state close to its minimum value, while a vibrated or com-

pacted material would have a density nearer its maximum value. 

Under increasing stresses the tendency for particle crushing

grows ( e.g. Arshad et al., 2014; Wood and Maeda, 2008 ). The frag-

ments produced can come in different shapes, while due to size

reduction the degree of polydispersity generally increase. These

factors affect the intrinsic physical properties of the material, not

least the minimum and maximum density. The work in Rubin and

Einav (2011) , Tengattini et al. (2016) formulated the problem of

maximum and minimum porosity evolution as a function of the

amount of breakage, in terms of how the grain size distribution

changes between its initial and assumed final state ( Einav, 2007 )

using geometrical parameters related to particle shape and rough-

ness ( Cho et al., 2006 ). Recently, a micro-macro link has been es-

tablished ( Guida et al., 2018 ) between the evolution of the void

ratio upon vertical loading, grain crushing and the evolution of the

number of crushed particles, using X-ray tomography. 

The prediction of porosity change due to loading is of fun-

damental importance in engineering mechanics, as well as in all

related industrial processing because it affects the mechanical

(strength and stiffness), hydraulic (permeability) and thermal (con-

ductivity) properties of the overall material. 

In the first part of this paper a compressibility model that links

the porosity of the mixture to the grading polydispersity is devel-

oped in order to further contribute to bridging the gap between

the micro structural properties and the macro mechanical behavior

of a granular material. An index of grading I G is defined to describe

the polydispersity and it is coupled to the evolution of the poros-

ity due to loading by the newly proposed compressibility model.

This model is then applied to experimental data and finally com-

bined with a heterarchical crushing model ( Marks and Einav, 2017 )

in order to predict both the grading evolution, and the resultant

porosity changes. Using this last step, the current paper aims to

establish an entirely complete compression model that couples the

macroscopic stress-density relation to microscopic grain crushing

mechanisms and statistical information of the evolving grainsize

distribution. 

2. Polydispersity 

The dispersity of a set of particles is a measure of the hetero-

geneity of their sizes: a mixture of particles with the same size,

shape and mass are termed uniform, or monodisperse, whilst a

mixture with distributed properties is called non-uniform, or poly-

disperse. The full grain size distribution (GSD) of a soil can be

determined experimentally by sieving and sedimentation meth-
Please cite this article as: G. Guida, I. Einav and B. Marks et al., Linkin

Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2018.11
ds ( ASTM-D422-63, 2007; BS, 1990 ), or with advanced techniques

uch as master-sizer ( Altuhafi et al., 2012; Sympatec, 2008 ) or im-

ge processing of three-dimensional images ( Karatza et al., 2017 ).

he GSD is usually presented as a cumulative curve (CGSD) on

emi-logarithmic axes and is typically reported using descriptive

ndices such as D 50 , the diameter of the particle which 50% of

he mass is smaller than, and the coefficient of uniformity C u =
 60 /D 10 , where D 60 and D 10 are the diameters which 60% and 10%

f the mass are smaller than, respectively. Although these mea-

ures have historically been successfully applied to classify soils,

articularly for separating well graded from poor graded soils, they

re often not representative of the entire GSD (also known as the

rading curve), because they are measures of one or two points

n the distribution. As an example, Fig. 1 shows different artificial

ixtures from ( Youd, 1973 ) with varying polydispersity. 

The polydispersity grows from Mix 1, which is almost monodis-

erse, through Mixes 2 and 3, which are normally graded, to Mix

 which is highly polydisperse. Mix 5, however, is a gap-graded

istribution. The various grading indices of the GSD of Fig. 1 , are

eported in Table 1 in terms of d min , d max , �d = d max − d min , D 50

nd C u . Mixes 3 and 5, even though qualitatively different, have the

ame C u , because they intersect near D 10 and D 60 . Furthermore, in

ases where the percentage of fines is high and sieving measure-

ents are limited, D 10 can often not be determined and C u cannot

e evaluated. 

The polydispersity of the GSD can also be evaluated through an

ntegral method ( Erguler, 2016 ), defining the grain size index I GS 

s the ratio between the area under the CGSD and the total area

etween 0.001 mm and d max (see corresponding values in Table 1 ).

 GS assumes values bounded between 0 (monodisperse case) and 1

nd it takes account of the slope, the shape and the position of the

urve. It manages, unlike C u , to recognize the difference between

ixes 3 and 5 ( Fig. 1 and Table 1 ) giving to Mix 5 an index of

rading in between Mix 2 and 3. However, this method works fine

or a limited range of size and further the area under the grading

urve does not always represent properly an index of polydisper-

ity: e.g. , the I GS of a bi-disperse GSD, composed of a small amount

f the large particles and a large amount of small particles, is close

o 1, even if it would not be regarded as a polydisperse distribu-

ion. 

In Göncü et al. (2010) and Kumar et al. (2014) further indices

ere proposed to faithfully represent the polydispersity of a 3D

pherical system, based on moments of the grain size distribution.

he work in this paper took inspiration by the concept of moment

f sizes, but in the context of geotechnical experience, it focused

n carrying only a single grading index based on the logarithm

f the size distribution, as the interests are in the ratios between

izes, rather than size absolute value. 

The grain size d is non-dimensionalised with respect to the

aximum grain size d max such that s = d/d max . The use of d max 

ather than say D 50 ensures that s is always between 0 and 1. It

s possible to non-dimensionalise the grain size by any other size,

owever this makes the following grading index I G more difficult

o interpret. Using this non-dimensional size, the geometric mean
g micro grainsize polydispersity to macro porosity, International 
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Fig. 1. Cumulative grain size distribution (CGSD) of mixes 1–5 reproduced from 

( Youd, 1973 ). 
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(  
¯ of the weight distribution is defined starting from its traditional

ormulation, s̄ = 

∏ 

i s i 
w i /w tot , and then taking the natural logarithm

f both sides, ln ̄s = ln 

(∏ 

i s 
w i /w tot 

i 

)
= 

∑ 

i 
w i 

w tot 
ln (s i ) , such that: 

¯
 = exp 

[ ∑ 

i 

w i 

w tot 
ln (s i ) 

] 
, (1) 

here w i is the weight retained at the sieve opening d i and w tot is

he total weight of the sample. This geometric mean captures the

nherent advantages of the logarithmic scale for portraying the full

etails of grain size distributions, which often span across many

og decades ( Bagnold, 1953 ). 

An index of polydispersity I G , named the index of grading, is

efined to overcome the limitations of the indices described above

 C u and I GS ). I G is dimensionless, and is defined as the geometric

tandard deviation of the normalized set of sizes s i . The geometric

tandard deviation describes the spread of GSD about a geometric

ean s̄ and is a direct analogy of the usual (arithmetic) standard

eviation, but operating on log-scale data. This geometric standard

eviation returns a value which is dimensionless and additionally

reserves information related to smaller sizes. 

 G = exp 

√ ∑ 

i 

w i 

w tot 
( ln s i − ln ̄s ) 2 = exp 

√ ∑ 

i 

w i 

w tot 
ln 

2 
(

s i 
s̄ 

)
. (2) 

These definitions of s̄ and I G , as proposed in Eqs. 1 and 2 are

ompared with other measures in detail in Alderliesten (2005) . The

alues of s̄ and I G for the GSD shown in Fig. 1 are reported in the

ast two columns of Table 1 . I G manages, better than C u to cap-

ure the difference between the gap-graded (Mix 5) and the graded

ixture (Mix 3). Using this definition of the index of grading, Mix

 has a polydispersity in between Mix 2 and Mix 3 ( Fig. 1 ). 

Another interesting formulation to describe GSD polydispersity

s based on the concept of statistical entropy S ( L ̋orincz et al.,

005 ): 

 = −
∑ 

i 

w i log b 
(
w i 

)
, (3)

here b is the logarithmic base on which the GSD data is discre-

ised. This formulation is very effective for describing degradation

rocesses, stability and rates of breakage, but in order to character-

ze the polydispersity, a present limitation is that it is only defined

n this discrete form and is dependent on the number of size frac-

ions. 

On the other hand, I G can be re-expressed using a continuum

ormulation, with integrals replacing the summations in Eq. (2 )

nd f ( s ) representing the smooth probability distribution function

f the normalized grain sizes: 

I G = exp 

√ ∫ 
f (s ) ln 

2 
(

s 

s̄ 

)
ds , 

s̄ = exp 

[ ∫ 
f (s ) ln (s ) ds 

] 
. 

(4) 

The index of grading I G is formally bound between 1, for a per-

ectly monodisperse case (as is C u ) and infinity, for an extremely

olydisperse case. To better understand the upper bound limits of

 G , several artificial power law grain size distributions are analyzed

nd shown in Fig. 2 . They are produced using the power law cu-

ulative distribution function with minimum and maximum cut-

ffs (see ( Einav, 2007 )): 

 (d ) = 

d 3 −β − d 
3 −β
min 

d 
3 −β
max − d 

3 −β
min 

, (5)

here β is the power law dimension of the grading curve (often

eferred to as the fractal dimension). In the limit where d = 0 ,
min 

Please cite this article as: G. Guida, I. Einav and B. Marks et al., Linkin

Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2018.11
he relationship above reduces to the traditional power law formu-

ation F (d) = 

(
d/d max ) 3 −β . Fig. 2 a-b show six power law grading

unctions on semi-logarithmic and linear axes respectively, charac-

erized by six different values of β: from β = −5 , corresponding to

n almost monodisperse case, to a value tending to 3. In each case,

 min = 0 . 001 mm and d max = 1 mm . 

Figs. 2 c and d show the trend of I G and s̄ , C u and D 50 as func-

ions of the exponent β . The trend of the derivatives, d I G /d β and

 C u /d β , are also reported in Figs. 2 c and d respectively. Both in-

ices start to increase significantly from β ≈ 1, monotonically in

he case of I G and with a peak on β ≈ 2.8 for C u . The maximum

alues of I G and C u increase as the minimum size s min = d min /d max 

ecreases, and when s min = 0 , I G tends to infinity. 

The major difference between I G and C u are due to the scales

f the definitions: logarithmic for I G ( Fig. 2 a) and linear for C u 
 Fig. 2 b). Considering Fig. 2 a, the CGSD with β = 2 . 999 appears un-

oubtedly more polydisperse than the one with β = 2 . 5 , while for

ig. 2 b the opposite is true. Computing C u in a logarithmic space,

s ln ( D 60 )/ln ( D 10 ), its trend with β increases monotonically, as for

 G . 

Fig. 3 reports the maximum and minimum porosity values, re-

pectively φmax and φmin , as a function of the index of grading I G 
nd s̄ , for two different classes of sand, with GSD (Mix 1–5) of

ig. 1 , as measured in Youd (1973) . 

The analyzed sands, MOL and CB, are both artificially assem-

led: the first, MOL, is a mix of Monterey, Ottawa, Lapis Lustre and

el Monte sands, while the second, CB, is Crushed Basalt. These

wo granular materials are characterized by different grain mor-

hology, respectively sub-rounded and angular, according to the

lassification of Powers (1953) . 

Figs. 3 a and b shows a decreasing trend of φmax and φmin with

 G , and a increasing trend with s̄ , regardless of the material. The

ncrease of polydispersity is directly associated with a decrease of

¯ , which indicates how far the average size is from the maximum

iameter (see Fig. 2 ), and leads directly to denser states due to the

ncreased packing ability of the grains. The influence of the dif-

erent particle morphologies is observed in the magnitude of the

orosity values: MOL mixtures, being more rounded and regular,

resent systematically lower porosity values than CB mixtures, that

nstead are characterized by more angular and irregular particles.

s described above, this occurs because rounded and regular grains

re more free to rearrange due to the lower surface friction and

eometrical resistance to rolling. 

. Micro to macro compressibility model 

The compressibility of granular materials is affected by density

or porosity) and by the state of the effective stress. Grain crushing
g micro grainsize polydispersity to macro porosity, International 
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Fig. 2. Power-law CGSD for varying β in: a) semi-logarithmic scale; and b) linear scale, respectively. Variations of indices with corresponding β values: c) variation of I G , 

d I G /d β and s̄ ; and d) variation of C u , d C u /d β and D 50 . 

Fig. 3. Variations of the maximum and minimum porosities with a) I G and b) s̄ for the two different sands of Youd (1973) : MOL (top) and CB (bottom). The mixtures shown 

(Mix 1–5) are the same as in Fig. 1 . Solid lines represent best fits using Eq. (12) with φMONO 
min 

= 0.33, φMONO 
max = 0.46, and α= 0.36 for MOL and φMONO 

min 
= 0.43, φMONO 

max = 0.57 and 

α= 0.28 for CB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

r  

i  

d  

c

3

 

f  

m  

v  

i

 

w  

t  

t  
modifies the size distribution and the shape of the grains, affecting

consequently the state of density of the material. The prediction

of deformation induced by loading and grain crushing represents

a fundamental step forward in the micro-macro mechanical mod-

eling of granular materials. In this work, following the approach

proposed by Tengattini et al. (2016) , the volumetric increment of

deformation ˙ εv is split into two contributions, one due to the de-

formation of the solid phase V s , and the other linked to porosity φ
and its rate of change ˙ φ, as: 

˙ εv = −
˙ V s 

V s 
−

˙ φ

1 − φ
, (6)

which follows from the definition of the total volumetric strain rate

( ˙ εv = − ˙ V t /V t , the change of the total volume over the original total

volume). Assuming that the solid phase is incompressible, ˙ V s = 0 ,

the compressibility of the material can be directly modeled using

the total porosity rate ˙ φ (see Eq. (7) ) that involves both reversible
˙ φel and irreversible ˙ φpl contributions as: 

˙ φ = 

˙ φel + 

˙ φpl , (7)
Please cite this article as: G. Guida, I. Einav and B. Marks et al., Linkin

Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2018.11
ith 

˙ φel linked to the inter-granular elastic strains of the mate-

ial, and 

˙ φpl to particle rearrangement, which is enhanced by grad-

ng changes. As a first step, the model is formulated under one-

imensional conditions, which is able to reproduce the lithostatic

onditions of granular materials. 

.1. Elastic component 

The elastic behavior of the soil skeleton is described in the

ramework of poroelasticity, which is firmly based on a micro-

echanical approach ( Detournay and Cheng, 1994 ). The reversible

olumetric response of a porous material is linked to the change

n pressure σ as the sum of two terms: 

˙ φel 

(1 − φ) 
= − ˙ σ

K s 
− ˙ σ

K φ
, (8)

here K s and K φ are the bulk moduli of the solid phase and of

he porous solid, respectively, while − ˙ σ/K s and − ˙ σ/K φ their rela-

ive deformation rates. The compressibility of the solid phase can
g micro grainsize polydispersity to macro porosity, International 
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Fig. 4. a) Evolution of φmin and φmax with grain crushing expressed by I G of Eq. (12) , for different values of α = 0 . 3 − 0 . 9 ; b) possible scenarios of unstressed porosity, φ0 

changes inside the band limited by φmin and φmax . 

b  

t  

s  

i

K  

w  

i  

(  

r

 

p  

s  

b  

e  

e  

a

G  

w  

p  

T  

i

3

 

s  

l

φ  

w  

T  

φ  

a  

F  

t

w  

a  

i  

p  

d  

o  

N  

t

a  

l

 

o

φ  

i  

s  

s

a  

g

φ

 

p  

r  

a

 

l  

b  

l  

g  

v

 

o  

L  

a  

s  

w  

l

4

 

d  

a  

(  

p  

a  

a  

o  

g  

t  

l

e assumed negligible compared to that of the drained bulk ma-

erial, because K s � K φ . Furthermore, assuming that the pores are

pherical and in an isotropic loading condition ( Mackenzie, 1950 ),

t has been shown that: 

 φ = 

4 G 

3 φ
(1 − φ) , (9)

here G is the shear modulus of the soil and φ the global poros-

ty state variable. In the limit where the porosity φ → 0, K φ → ∞
according to Eq. 9 ), the elastic component of deformation is just

elated to the deformability of the solid phase. 

It is noted that the stiffness of the porous solid does not de-

end on the stiffness of the solid phase, but only on the shear

tiffness of the porous material, related to the frictional contacts

etween grains. G itself, however, is strongly affected by the mean

ffective confining pressure and porosity of the medium ( Senetakis

t al., 2012; Viggiani and Atkinson, 1995 ). To capture these effects,

n empirical formulation ( Rubin and Einav, 2011 ) was adopted: 

 = g(1 − φ) 
3 
2 

( σ

σa 

) 1 
2 , (10)

here σ a is the atmospheric pressure and g is a dimensional stress

arameter [F/L 2 ] that is required to be calibrated by experiments.

he shear modulus is expected to increase with decreasing φ and

ncreasing confining stress σ . 

.2. Plastic component 

We start by defining an unstressed porosity φ0 , a property con-

istent with the methods ( ASTM-D4254, 2006 ) of measuring the

imiting porosities φmax and φmin under zero stress: 

0 = τφmin + (1 − τ ) φmax , (11)

here τ is the auxiliary porosity index ( Rubin and Einav, 2011;

engattini et al., 2016 ). When τ = 1 , φ0 = φmin and when τ = 0 ,

0 = φmax . The values of φmin and φmax depend on both the GSD

nd the particle shape ( Althuhafi and Coop, 2011 ), as shown in

ig. 1 a. The following power law functions between φmin / max and

he index of grading I G are assumed: 

φmin = φMONO 
min I −α

G , 

φmax = φMONO 
max I −α

G , 
(12) 

here the two constants φMONO 
min 

and φMONO 
max are the minimum

nd maximum porosities at zero stress of a monodisperse grad-

ng (when I G = 1 ) and α is a dimensionless model parameter de-

endent on grain properties. The above relationship describes the

ecrease of porosity as polydispersity increases consistently with

ther experimental and numerical findings ( Kumar et al., 2014;
Please cite this article as: G. Guida, I. Einav and B. Marks et al., Linkin
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akata et al., 2001b; Ogarko and Luding, 2013; Youd, 1973 ). Note

hat in Eq. 12 , the effect of grain shape is only captured in φMONO 
min 

nd φMONO 
max , while the effect of changing particle shape on the evo-

ution of φmin and φmax is ignored. 

Taking the rate of change of the unstressed porosity (11) , we

btain: 

˙ 
0 = 

[ 
τ ˙ φmin + (1 − τ ) ˙ φmax 

] 
+ (φmin − φmax ) ̇ τ . (13)

In predominantly compressional loading, the auxiliary index τ
s assumed not to vary during loading ( ̇ τ = 0 ), and the plastic

train rate could be evaluated by the rate of change of the un-

tressed porosity, only depending by the rate of change of φmax 

nd φmin , thus by the evolution of grading polydispersity due to

rain crushing: 

˙ 
pl ≈ τ ˙ φmin + (1 − τ ) ˙ φmax . (14) 

In a more general loading condition, the rate of change of the

lastic porosity would have to be extended to capture grain rear-

angement phenomena associated with granular temperature such

s e.g . dilation. 

As shown in Fig. 3 , this model for the unstressed porosity evo-

ution is reasonable. The main difference between the curves could

e attributed to grain morphology, being sub-rounded and angu-

ar respectively. In these two samples, the increased irregularity of

rain shape led of course to greater φMONO 
min/max 

and also to a lower

alue of α. 

Fig. 4 a shows the evolution of φmin and φmax as a function

f I G , with φMONO 
min 

= 0 . 4 and φMONO 
max = 0 . 6 , for various values of α.

ower values of α correspond to a less compressible behaviour, i.e.

 smaller change in φ for a given change in I G . Fig. 4 b shows pos-

ible variations of the unstressed porosity, φ0 . Recall that in this

ork a constant τ is assumed and thus follow the indicated ˙ τ = 0

ine in this figure. 

. Application to crushable granular soil 

In Nakata et al. (2001a) and Nakata et al. (2001b) , one-

imensional compression tests for both initially monodisperse (di-

meters ranging between 1.4 mm and 1.7 mm) and polydisperse

diameters ranging between 0.25 mm and 2.0 mm) samples are

erformed, and their grading curves are shown in Fig. 5 a and b as

 function of vertical stress. The compressibility model proposed

bove is applied to this data in Fig. 5 c to examine the evolution

f I G in relation to yielding. It is evident that yielding in terms of

rain crushing for the monodisperse case begins earlier than for

he polydisperse case, since its grading changes more rapidly at

ower stress. 
g micro grainsize polydispersity to macro porosity, International 

.032 

https://doi.org/10.1016/j.ijsolstr.2018.11.032


6 G. Guida, I. Einav and B. Marks et al. / International Journal of Solids and Structures xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: SAS [m5G; December 10, 2018;12:47 ] 

Fig. 5. Grading curve evolution with increasing vertical loading for a) initially monodisperse GSD and for b) initially polydisperse GSD taken from Nakata et al. (2001a) . 

c) Evolution of I G with vertical stress for both cases. ‘Yielding’, as indicated in gray, may be associated with a sharp variation in I G , although we note that it is actually a 

continuous process, with grain crushing observable at nearly any stress level. 

Table 2 

Complete set of the macro-scale parameters the silica sand used in Nakata et al. (2001a) re- 

quired for the compressibility model. Note that the above model depends on only one param- 

eter with dimensions ( g ), with it all other parameters being purely geometrical. 

Monodisperse Polydisperse 

φMONO 
min 

φMONO 
max φ i τ φMONO 

min 
φMONO 

max φ i τ α g 

[-] [-] [-] [-] [-] [-] [-] [-] [-] [MPa] 

0.38 0.47 0.39 0.8 0.41 0.52 0.36 0.1 0.3;0.5;0.8 175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Calibration of the parameter g from the experimental data of 

Senetakis et al. (2012) . 

p

Table 2 summarizes all of the macro scale parameters needed

for the calibration of the compressibility model against exper-

imental data. Note that φMONO 
min 

and φMONO 
max are deduced by

Nakata et al. (2001b) . As described above, also note that these val-

ues are a function of grain shape, which are different for the two

gradings studied. For consistency and simplicity, the reported val-

ues are chosen for the initial smallest grains in each sample. 

The monodisperse sample is prepared in a relatively dense

state, while the polydisperse case corresponds to a relatively loose

state, as shown in the Table 2 . In the following the effect of varying

α on the compressibility is examined, as α is the only free param-

eter. 

Finally, the elastic contribution of the porosity evolution is cal-

ibrated in accordance with Eq. (10) . The parameter g is obtained

by fitting the small strain shear stiffness measurements on natural

quartz sand ( Senetakis et al., 2012 ) as a function of the effective

stress and porosity, as shown in Fig. 6 . 

According to the compressibility model of Section 3 , for each

loading stage k at which the GSD and stress level are known, the

total porosity φk , is computed as the sum of the porosity of the

previous stage plus an increment �φk < 0 (negative in 1D com-
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Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2018.11
ression) , composed of elastic �φk 
el 

and plastic �φk 
pl 

parts. 

φk = φk −1 + �φk , 

�φk = �φk 
el + �φk 

pl < 0 . 
(15)
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Fig. 7. Theoretical and experimental ( Nakata et al. (2001a) and Nakata et al. (2001b) ) porosities over vertical stress for a) initially monodisperse and b) initially polydisperse 

samples during one-dimensional compression for various values of α. 

Fig. 8. Re-examining Fig. 7 for α = 0 . 8 for initially a) monodisperse and b) polydisperse samples, with cumulative porosity changes being separated for the plastic (light 

grey area) and the elastic contributions (dark grey area). 
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The variation of the elastic part is computed based on

q. (8) as: 

φk 
el = − �P k 

K 

(k −1) 
φ

< 0 , (16) 

here K φ depends on the total porosity φ at the previous loading

tage k − 1 . The increment of the plastic part �φk 
pl 

is simply calcu-

ated from the difference of the state of the unstressed porosities

s: 

φk 
pl = φk 

0 − φk −1 
0 < 0 . (17) 

Fig. 7 shows the evolution of porosity with loading for ini-

ially monodisperse ( Fig. 7 a) and polydisperse ( Fig. 7 b) samples

uring one-dimensional compression tests up to 92 MPa. Experi-

ental measurements ( Nakata et al., 20 01a; 20 01b ) are compared

ith the model results evaluated at the loading stages correspond-

ng to the known GSD (corresponding to symbols on Fig. 7 ) for

hree values of α. 

The model can replicate quite well the apparent yield point and

he pre- and post-yield evolution of the porosity. As the polydis-

erse corresponds to I G different than unity, its initial porosity de-

ends on the choice of α. The α = 0 . 8 curve best fits the experi-

ental data, which represents angular and irregular particles. 

Fig. 8 re-examines these experimental and model lines for the

= 0 . 8 case, in terms of the split between the elastic and plastic

umulative changes of the porosities from the start of the tests,

ighlighted separately. Starting from the apparent yield point,

ost of the porosity variation comes from the plastic contribu-

ion related to the grain crushing phenomena. On the other hand,
Please cite this article as: G. Guida, I. Einav and B. Marks et al., Linkin

Journal of Solids and Structures, https://doi.org/10.1016/j.ijsolstr.2018.11
he elastic contribution controls the compressibility pre-yield, and

ould also give an indication of the swelling behavior of the sample

uring unloading, after crushing, if experimental data were avail-

ble to compare with. 

. Micro to macro crushing-compressibility model 

In the previous sections a micro to macro compressibility model

as developed and tested, which connects macroscopic stress and

orosity to the microstructural state of the grain size distribu-

ion. The remaining question is, how to predict this microstruc-

ural state. Here, the use of the ”heterarchical model” in Marks and

inav (2011, 2015, 2017) resolves this critical point. 

Unlike earlier models that represent the grain-size distribution

sing a single scalar breakage variable e.g. , ( Einav, 2007; Hardin,

985 ), the heterarchical model depends on the whole GSD with

rain crushing developing stochastically at a microstructural grain

cale. In this model a regular (N + 1) -dimensional lattice is de-

ned, with N being the number of spatial coordinates and the

1 representing the additional microstructural coordinate which

reserves information at a finer resolution below the representa-

ive volume element about the microscopic grainsize and nearest

eighbours’ grainsize. Each cell of the lattice is related to a certain

hysical position in space and to a determined mass fraction of a

article size of the grading (see Marks and Einav (2015, 2017) for

ore details). 

Here, we explore the constitutive response of only a single

acroscopic point in space i . In other words, we make use of only

he single +1 microstructural coordinate. Nevertheless, we wish to

mphasize that the possible use of the N dimensional model is
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conceptually important, as it can allow us to couple in the future

the full constitutive process of the grain crushing phenomenon

with possible grainsize mixing and segregation that can occur in

open systems ( Marks and Einav, 2015; 2017 ). 

In this model grain crushing develops only if the applied stress

in the i th microstructural lattice cell, σ t 
i 
, exceeds its crushing criti-

cal value, σ c 
i 

: 

i f σ t 
i ≥ σ c 

i → crushing . (18)

The microstructurally local tensile stress, σ t 
i 
, is found by map-

ping the externally applied stress, σ t , in a way that considers the

effects of neighbours’ cushioning (see Appendix). This cushioning

factor is taken such that when particles are surrounded by neigh-

bours of the same size, the local tensile stress is equal to the bulk

one, yet the stress goes to zero when the neighbours are far from

the same size ( Marks and Einav, 2017 ). 

The strength, σ c 
i 
, in the microstructural i th cell is drawn from

a size-dependent Weibull distribution ( Ben-Nun and Einav, 2010;

McDowell and Bolton, 1998 ), with bigger grains being weaker

due to increasing chance for imperfections within the grains

( Weibull, 1939 ). When grain crushing occurs, the grain size in that

cell is updated by drawing a new size from an imposed fragment

size distribution. The particle strength as well, associated to the

size, is updated every time the breakage phenomenon takes place. 

5.1. Results 

The one-dimensional compression tests on monodisperse and

polydisperse ( Nakata et al., 2001a ), as already reported in

Section 4 , are here simulated using the combination of the com-

pressibility and heterarchical models, with the former predicting

the dependence of the porosity on the GSD and the latter predict-

ing how the GSD evolves as a function of the stress. The details on

the implementation of this merged model (open source code pro-

vided in Marks and Guida (2018) ) and on the calibration procedure

used to determine the parameters are reported in the Appendix. 

Fig. 9 a shows how the combined compressibility-heterarchical

model predicts the experimental results in terms of compressibil-

ity (porosity φ against vertical stress σ ) for monodisperse and

polydisperse samples. The model predicts qualitatively well the ex-

perimental behaviour over the whole range of stress investigated,

from pre- to post-yielding. It also predicts quantitatively well the

polydisperse case. However, the monodisperse case is slightly un-

derestimated by the model with the point of yield reached at

a lower stress than the experiment, with grain crushing begin-

ning too early in the heterarchical crushing model. This may be

attributed to the possible different effect of cushioning (see Ap-

pendix) assumed the same for the two cases. Finally, though there

is no experimental data to compare with for this set of compar-

isons, the model shows a very reasonable elastic unloading, here

starting in both cases from σmax = 92 MPa. 

Figs. 9 b and c evaluates how the model predicts the exper-

imental data of the cumulative grain size distributions (CGSDs).

Accordingly, the heterarchical model predicts quantitatively fairly

well the evolution of the CGSD under increasing vertical stress.

However, for the initially monodisperse case ( Fig. 9 b) the quali-

tative comparison is generally only fair, though the shape of the

lines for the smaller grain sizes is predicted rather nicely. The ap-

parent discontinuity of the modelled CGSD at around s ≈ 1 may be

partly reasoned by continuous grinding of larger grains’ asperities

in the experiments, which is not taken into account through the

model. Note that calculations are carried out with fragmentation

probability function that follows either Weibull, power law or uni-

form distributions. While these affect the shape of the CGSD, es-

pecially at first stages, this effect is not that significant, and thus

cannot probably reason the above mentioned discontinuity. Finally,
Please cite this article as: G. Guida, I. Einav and B. Marks et al., Linkin
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e note that the model agrees with the experimental finding that

he initially monodisperse sample experiences larger overall varia-

ions from the initial CGSD compared to the polydisperse samples.

. Conclusion 

This paper presents a simple micro to macro compression

odel for granular materials whose macroscopic stress response is

riven by microstructural stochastic phenomena of grain crushing

sing a heterarchical approach that allows to calculate the evolv-

ng grain size distribution, itself controlling the macroscopic “un-

tressed” porosity. The latter property is bounded by maximum

nd minimum porosities at zero stress per usual protocols ( ASTM-

4254, 2006 ). Changes to the unstressed porosity lead to changes

n irreversible plastic porosity, while the reversible elastic poros-

ty is calculated using the continuum poroelasticity theory. In re-

urn, overall porosity changes are recovered by summing up these

rreversible and reversible contributions. The relation for the un-

tressed macroscopic porosity in terms of the grain size distribu-

ion is motivated experimentally, using a single newly defined in-

ex of grading I G , the geometric standard deviation of grain size

istribution. It is inspired by the definition of the first two-order

ogarithmic moments of size distribution, sufficient for the current

aper to properly characterize the dispersion of grainsize. 

The compressibility model was successfully applied to experi-

ental data of high pressure one-dimensional compression tests

 Nakata et al., 2001a ) which involves substantial grain crushing.

ost of the variation in the porosity is shown to be due to its

rreversible component, which indeed increases due to increasing

olydispersity upon continuous grain crushing. On the other hand,

he elastic contribution shows to control the compressibility prior

o apparent yield, which marks the stress level at which significant

rain crushing occur. 

The irreversible variation of porosity is here assumed to be in

uch a way that the material relative density remains constant dur-

ng the tests, which is thought to be realistic for predominantly

ompressional tests. This assumption may require alteration for

ests involving substantial shear, where grains significantly dilate,

r during vibration, where granular temperature may change the

elative density even without changing the stress. 

Further future considerations should be paid to relaxing some

ther simplifying steps. For example, the effect of grain morphol-

gy is here only taken through the initial values of the minimum

nd maximum densities, which change only as a function of grain

ize. However, grain morphology could also obviously change dur-

ng loading, with initially spherical grains becoming more angular,

nd conversely, extremely angular grains becoming rounder. Exten-

ions might be required to introduce new independent morpho-

ogical state variables, potentially even in terms of new probability

istributions. However, since the grain size may be considered as

he first and simplest indicator of grain morphology, all other in-

icators might come with the cost of unwanted complexity. How

o tackle this problem is an open question. As another example,

he rules which dictate the progression of grain crushing using the

eterarchical model may also be extended to include grain-size de-

endent grinding processes, which may smooth any discontinuity

n the grain size distribution for initially monodisperse samples. 

In summary, the current work establishes both a unique new

pportunity for interpreting experimental data, as well as a way

or predicting a variety of engineering soil properties such as per-

eability and retention features that are strongly dependent on

he grain size distribution. The bonus of this particular model is

n its ability to both predict how the porosity changes with stress,

nd these two variables change (or affect) the grain size distribu-

ion. 
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Fig. 9. a) Model prediction and experimental data (from Nakata et al. (2001a) ) of the porosity φ plotted against the vertical stress σ for both initially monodisperse (MONO) 

and polydisperse (POLY) grain size distributions. Experimental and simulated cumulative grain size distributions (CGSDs) for initially b) monodisperse and c) polydisperse 

samples. 
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Table 3 

Micro scale parameters of a Silica sand used for the heterarchical crushing 

model. σ c 
0 is evaluated at a reference size d 0 = 1 . 55 mm . 

lattice size grain strength fragments size distr. cushioning 

# i # j σ c 
0 [MPa] w [-] κ [-] λ [-] n [-] 

10 0 0 0 1 30.96 3.04 1.0 0.5 0.5 
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ppendix A 

eterarchical model: calibration and analysis 

Apart from the initial grain size distribution, five additional pa-

ameters are required for the definition of the heterarchical model:

• Parameters defining particle strength, such as the critical ref-

erence strength, σ c 
0 

and the Weibull modulus, w . Here the

strength of each cell, σ c 
i 
, is drown from a Weibull distribution

( McDowell and Bolton, 1998; Ben-Nun and Einav, 2010 ): 

P (s i ) = exp 

[ 
−

(
s i 
s 0 

)
3 
(σ c 

i 

σ c 
0 

)
w 

] 
, (19)

where P ( s i ) is the crushing probability of a particle with nor-

malized size s i = d i /d max when loaded with an applied stress of

σ c 
0 

relative to a the critical strength of a reference particle with

size s 0 . σ
c 
0 
, which corresponds to the stress at which the 37% of

particles of size s 0 are survived, and w is the Weibull modulus

calibrated against experimental results. 

• Parameters describing the fragment size distribution, κ and λ.

Here, a normalized two-parameter Weibull distribution func-

tion ( Cheong et al., 2004; Marks and Einav, 2017 ) is used, which

represents the probability of creating particles of size s given

the crushing of particles of size s ′ . 

P (s | s ′ ) = 

κ
λ

( s 

λs ′ 
)
κ−1 e 

−
( s 

λs ′ 
)

κ

1 − e 
−
( 1 

λs ′ 
)

κ

, (20)

where κ , and λ are parameters controlling respectively the as-

sortment and the average size of the fragments. 
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• The effect determining how strongly neighbours provide cush-

ioning, in terms of the parameter n . This parameter comes in

the scaling factor, ζ i , that relates the external applied stress to

the local stress through the relation 

σ t 
i = σ t ζi . (21) 

This scaling is such that when particles are surrounded by

neighbors of the same size, the local tensile stress is equal to

the bulk one, and this stress goes to zero when the neighbours

are far from the same size ( Marks and Einav, 2017 ). 

ζi = exp 

[ 
−

ln ( s i 
s̄ i 
) 

2 n 

2 

] 
, (22) 

where s̄ i is the mean size of cell neighbors. 

Table 3 summarizes the stochastic heterarchical lattice model

arameters used for the sand samples of ( Nakata et al., 2001a ) that

re used identically for both the monodisperse and polydisperse

amples. The lattice has 10,0 0 0 cells for the internal coordinate i

thus ensuring statistical representativeness), and one cell to the

hysical coordinate j , assuming as unique reference coordinate for

he physical volume. The strength parameters are calculated from

eported values provided in Nakata et al. (2001b) corresponding

o a reference size d = 1.55 mm. The fragment size distributions
0 
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and κ , λ and n are calibrated by trial and error to give the best

agreements in term of GSD evolution. 

The numerical implementation of the merged model is given in

an open source code, ( Marks and Guida, 2018 ), which follows three

key steps: 

• Computation of the index of grading I G from the values s i of

each cell; 

• Evaluation of porosity variation �φ during loading, as a super-

imposition of the elastic and the plastic components; 

• Evaluation of the compressibility curve. 
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