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Abstract Naturally occurring granular flows, such as land-
slides, debris flows and avalanches typically have size ratios
of up to 106 between the smallest and largest constituent
particles. For the purposes of modelling, however, it is gener-
ally assumed that a single representative size can adequately
describe the grains. Polydisperse flows are not described
more completely primarily because of two reasons: The first
is a lack of understanding of the physical mechanisms which
affect polydisperse flows. The second is a lack of models
with which to describe such systems. Here, we present a
heterarchical multiscale model which accounts for both the
microstructural evolution within representative elementary
volumes, and also the associated changes in bulk flow prop-
erties. Three key mechanisms are addressed; segregation,
comminution and mixing. Granular segregation is an impor-
tant mechanism for industrial processes aiming at mixing
grains. Additionally, it plays a pivotal role in determining
the kinematics of geophysical flows. Because of segrega-
tion, the grainsize distribution in a granular medium varies
in space and time during flow. Additional complications arise
from the presence of comminution, where new particles are
created, potentially enhancing segregation. This has a feed-
back on the comminution process, as particles change their
local neighbourhood. Simultaneously, particles are generally
undergoing remixing, further complicating the segregation
and comminution processes. The interaction between these
mechanisms is explored using a stochastic lattice model with
three rules: one for each of segregation, comminution and
mixing. The interplay between these rules creates complex
patterns, as seen in segregating systems, and depth depen-
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dent log-normal grading curves, which have been observed
in avalanche runout.
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1 Introduction

The dynamics of flowing granular material are important
in many natural processes, such as debris flows, land-
slides, rockfalls and shear banding. Industrial processing
also requires many granular flows, such as rotating or tum-
bling mills, chute flows and hopper filling or discharge. It is
often postulated that these flows can be described in terms
of conventional continuum mechanics, with an appropriate
constitutive model that represents the bulk behaviour [1]. At
the same time, it is also well understood that these same
flows typically exhibit complex behaviour, including many
phenomena that cannot be described in the context of a con-
ventional continuum. For example, size segregation [2,3],
agglomeration [4,5] and comminution in closed systems [6]
all have no analogue in continuum mechanics. One method
to include these phenomena in open systems is to involve the
grainsize distribution as a dynamic property of the continuum
[7].

The description of granular material can in general be
divided into two fields, being either a statistical ensemble of
a set of discrete particles, or a continuum [8]. If we wish to
describe a granular flow as a continuum, while still retain-
ing the relevant micromechanical behaviour, the accepted
methodology is via upscaling, or coarse-graining [9,10].
Using these methods, we vastly decrease the amount of infor-
mation at the representative volume element (RVE) level,
from the positions, velocities and forces acting on every par-
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ticle, to a small set of continuum properties which represent
the bulk behaviour. One key element which is lost in such a
process is the local arrangement of each particle, and its’ cor-
responding loading state. For the case of comminution, the
breakage mechanics theory has been applied successfully to
describe how grainsize distribution evolves and affects the
constitutive response of brittle granular material in closed
systems [6], and it is well understood that both the typical
fracture energy and the fragment size distribution are func-
tions of the loading state of the individual particle [11,12].
Currently, there are no spatio-temporal continuum models
for measuring changes in the grainsize distribution for such
open systems where particles can both advect in space and
simultaneously change in size.

As shown in Fig. 1, typical multiscale models are hier-
archical, coupling distinctly different models at different
length scales. Take for example coupled FEM–DEM models
[13,14], which replace a constitutive model in a finite ele-
ment simulation with a discrete element simulation at each
gauss point. Here, we propose a new paradigm for construct-
ing multiscale models—a heterarchical model. This model,
in contrast to a hierarchical one, loses the strict distinction
between the two scales, allowing information to be passed
not only from scale to scale, but from the microscale within
one RVE to another RVE.
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Fig. 1 Alternative structures for multiscale models. Top left a hier-
archical model, where information is passed between two distinct
simulations, each at different length scales. Top right a heterarchical
model, where the two length scales are coupled directly as orthogonal
directions in a single model.Bottom left a typical example of a hierarchi-
cal model, where a constitutive model in a finite element simulation is
replaced with a separate discrete element simulation. Bottom right The
heterarchical model presented here, where the two scales coexist in the
same framework. In all cases, light blue represents the continuum scale,
and green represents the representative volume element scale (colour
figure online)

Fig. 2 Top a mill stone—the grinding of wheat grain using a mill stone
is one of the oldest industrial problems in human history, yet still mathe-
matically unsolved. Particles of wheat grain are crushed to a fine powder
by very large deformation shearing at high normal stress. The fine pow-
der segregates out of the shear zone into cavities built into the mill stone,
and then under the action of centripetal forces migrates out to a collec-
tion bin. Bottom a long run-out landslide, where the ratio of L/H can
be up to 10. L and H are the change in horizontal position and height
respectively of the centre of mass of an avalanche during run-out. Large
values of L/H are possible indicators of lubrication by a layer of very
small particles at the base of the flow, which have been created as a
result of comminution and percolated downwards through segregation

These effects are especially important in two poorly under-
stood systems, shown in Fig. 2. The first is ancient grain
milling, where combined normal and shear stresses crush
wheat grains, dynamically sieving the resultant mix. The sec-
ond is long run out avalanches, where it is unclear why these
incredibly destructive natural phenomena can travel enor-
mous distances, up to 10 times their vertical fall [15,16]. With
regards to debris flows, it has been understood for some time
that there is a need to model spatial and temporal variability
in the grainsize distribution of flowing material to be able to
implement appropriate rheological models [17].

2 A grainsize enriched continuum

A convenient formulation to describe a polydisperse mate-
rial as a continuum is that of population balance equations
[7,18,19]. In addition to the usual properties of a contin-
uum, which are described as functions of physical space and
time coordinates, the population balance framework allows
for the inclusion of internal coordinates. Here we define two
choices of internal coordinate which can be used to describe
the microscale of a polydisperse material. Either the internal
coordinate can represent the physical size of the constituent
particles, which we denote the grainsize coordinate s, as in
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Fig. 3 Two representations of information internal to a representa-
tive volume element. Left the arrangement of grain size s along the
microstructural coordinate m. This coordinate is assumed here to be
cyclic, and so is shown on a polar plot. Right the grainsize distribution
is a normalised histogram of the grain sizes along a grainsize coordinate
s. Information can only be passed in one direction from the microstruc-
tural coordinate to the grainsize coordinate

[7], or the coordinate(s) can be a discretisation of the vol-
ume within the RVE, such that distance along the coordinate
axis/axes represents somehow the local neighbourhood of
particles, which we will name as the microstructural coor-
dinate(s). A comparison of each of these assumptions for a
single RVE is shown in Fig. 3.

For the case of a grainsize coordinate s, as in [7], the
internal coordinate allows for every point in space to have a
grainsize distribution which can evolve with time. We then
describe this continuous grainsize distribution φ(s) of the
system in terms of the solid fraction�(s)of particles between
grainsizes sa and sb as

�[sa < s < sb] =
∫ sb

sa
φ(s′) ds′. (1)

Following [7,18,19], conservation of mass at a point in space
r = {x, y, z} can then be expressed as

∂φ

∂t
+ ∇ · (φu) = h+ − h−, (2)

where u(r, s, t) = {u, v, w} is the material velocity,
h+(r, s, t) is the birth rate, describing the creation of new
particles of grainsize s at time t , and h−(r, s, t) is the death
rate, at which particles of grainsize s are destroyed.

The second term in Eq. 2 describes the advection of mass,
such as characterises open systems, where material can move
in physical space. The right hand side of the same Equation
represents mechanisms traditionally treated exclusively in
closed systems, such as agglomeration, crushing and abra-
sion. Each of these systems — open and closed—has been
the subject of much study, but the coupling of such processes
using a continuum description has yet to be achieved.

3 Discretising heterarchical multiscale continua

In the interest of constructing a heterarchical multiscale
model, we then wish to describe both the continuum-level
properties, and those at the scale of the REV itself, in one
rational framework. For this purpose, we turn to the stochas-
tic lattice model defined in [20]. This model consists of a
regular cartesian lattice in D + S dimensions, where D is
the number of external or physical coordinates, and S is the
number of microstructural coordinates. We treat the exter-
nal and microstructural coordinates as a higher dimensional
continuum, such that each coordinate is orthogonal to the
others.

For the following, a single spatial/physical coordinate, x ,
and a single microstructural coordinate, m, are considered,
although generalisation to higher dimensions is straightfor-
ward. The system is then discretised into a regular cartesian
grid, numbered from the bottom-left corner, so that position
on the grid can be expressed using the pair {xi ,m j }, where i
and j indicate the number of cells across in the respective x
and m directions, as shown in Fig. 1, with X and M the total
number of cells in each direction. In all cases the system is
considered to be cyclic in the m direction, such that j ≡ j
mod M , where mod M is the modulo operator. Each cell
contains a single number, si, j , which dictates the grainsize
of the particles in the RVE defined by the row i , as shown in
Fig. 3. Furthermore, we consider the local neighbourhood of
a particular particle as those that are adjacent in the m direc-
tion. The m direction now contains more information than
the grainsize distribution alone, as the local configuration of
particles is preserved, below the resolution of the analogous
continuum scale.

We can now connect the microstructural coordinate m to
the grainsize coordinate s (as illustrated in Fig. 3). This is
done by defining a discretised grainsize distribution φi at
any height xi as a histogram of the number of cells within a
discrete grainsize fraction with centre sa and width Δs in all
M neighbours taken in the m direction as

φi (sa) = 1

MΔs

M∑
j=1

H
(

Δs

2
− |si, j − sa |

)
, (3)

where H is the Heaviside step function. We also define the
local average grainsize over the nearest two neighbours in
the m-direction as

si, j = si, j−1 + si, j+1

2
, (4)

although any number of nearest neighbours can in general be
used to define the local neighbourhood size. A more gen-
eral average grainsize could be defined nonlocally along
the microstructural coordinate (e.g., considering a vector of
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left and right neighbours si, j−n and si, j+n with appropriate
weights). Another possibility is to increase the number of
microstructure coordinates with a variety of possible sten-
cils. However, for the sake of simplicity these possibilities
are not explored in this paper.

We will next construct an equivalent continuum model,
based on population balance equations, so that in the limit of
infinitesimal cell size we can show that the stochastic lattice
may be regarded as a first order partial differential solver [21].
In fact, there are many ways to recover continuous results
from such a system [22].

4 Closed systems

We begin by considering closed systems, which are those
in which material does not advect in space, such that
u = 0. There are many processes that have previously
been represented as closed systems, such as comminution,
agglomeration and abrasion. We here describe only com-
minution, where particles are crushed to form fragments of
smaller sizes.

Following the formulation in [19], for the case where parti-
cles are created only by the fragmentation of larger particles,
we can express the death rate as

h−(s, t) = b(s)φ(s, t), (5)

where b(s) is some specific breakage rate which governs the
frequency at which particles of grainsize s break into smaller
fragments. The birth rate is then the sum of breakages into
size s over all particles larger than s, which can be expressed
as

h+(s, t) =
∫ ∞

s
b(s′)P(s|s′)φ(s′, t) ds′, (6)

where P(s|s′) is a probability density function which dictates
the probability of creating grainsize s from crushing a particle
of grainsize s′. Using (2), we can then express conservation
of mass as

∂φ(s, t)

∂t
=

∫ ∞

s
b(s′)P(s|s′)φ(s′, t) ds′ − b(s)φ(s, t).

(7)

In a discrete sense, such as that defined in the stochastic
lattice, we can rewrite this equation as the conservation of a
grainsize fraction with centre sa and width Δs, over a time
step Δt as

Δφi (sa)

Δt
=

Ns∑
k=a+Δs

(
bi (sk)P(sa |sk)φi (sk)Δs

)
− bi (sa)φi (sa),

(8)

where Ns is the total number of evenly spaced bins of size
Δs. These equations have been extensively investigated [23–
26] and solutions have been proposed for many mechanisms
of comminution, such as grinding, cleavage and abrasion.
However, breakage mechanisms are normally assumed with
a priori knowledge that the grainsize distribution will evolve
towards a power law [18,23]. In fact, in most models, either
the breakage rate b, the fragment size distribution P , or both,
are generally assumed to be power law in nature from the out-
set [23]. For high velocity impacts, power law fragment size
distributions are often measured due to single impact events
[27]. At the low relative velocities and higher coordination
numbers experienced in a granular flow, however, the frag-
ment size distribution appears to follow a Weibull distribution
[28,29].

Another method to model the problem has been proposed
in various forms, and uses simple geometric analogies in
a cellular automaton [30,31] where power law patterns are
found, not imposed, by assuming that particles with neigh-
bours of the same size are likely candidates to crush. We can
unify these two approaches, of macroscopic grainsize dis-
tribution changes, and microscopic nearest neighbourhood
behaviour, by including a microstructural coordinate in a
stochastic lattice model.

4.1 Comminution

The process of comminution has two complimentary com-
ponents which we must define. Firstly, there is a particular
loading state at which individual particles will crush. Sec-
ondly, there is a fragment size distribution which defines the
products that are created when the particle crushes. We can
define a crushing event as:

if σ t
i, j ≥ σ c

i, j : si, j (t + Δt) = Xsi, j (t), (9)

where σ t
i, j is the maximal tensile stress within a given parti-

cle, and σ c
i, j is the maximal tensile stress at which the particle

crushes, and X is an independent random variable pulled
from an appropriate fragment size distribution. We can then
measure a coarse grained breakage rate as the fraction of
particles broken in a given time increment, as

bi (sa) =
∑M

j=1 H
(
σ t
i, j − σ c

i, j

)
H (

Δs
2 − |si, j − sa |

)
Mφi (sa)Δt

.

(10)

In [20], a crushing rule was proposed for a stochastic lattice
model. This was a purely phenomenological model, which
eschewed the idea of stress. Here, a more complete model is
derived, beginning with the assumption of a Weibull distri-
bution of flaws within each particle, such that the probability
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of a particle of the maximum size surviving at a given stress
is given by

Psurvival = e−(σ c/σ c
M )m . (11)

Following [31,32], this is used to define the tensile stress at
which a particle of given size is likely to crush, subject to
diametric loading, which gives

σ c
i, j (s) = σ c

M

(
si, j
sM

)−3/w

, (12)

where the largest particle, with size sM , will crush at σ c
M ,

independent of the Weibull parameter w. A large value of
w indicates that the material is quite uniform, and that a set
of particles of a given size is likely to break within a small
range of stresses. To measure σ c

M and w, one could crush
a set of particles of similar size, measure their fragmenta-
tion stress, and fitting (11). We define a mapping ζ which
relates the maximum tensile stress within each particle, σ t

i, j ,

to the bulk applied stress, σ b, such that σ t
i, j = ζi, jσ

b. The
mapping between these two stress fields can be related to the
coordination number Zi, j , which we define as

Zi, j = Z0

(
si, j
s̄i, j

)2

, (13)

where Z0 is the expectation value of the coordination number
of a particle of the average size, and the coordination number
is assumed to scale with the particle surface area, as measured
in [33]. Three cases are shown schematically at the top of
Fig. 4. If a given particle has very few contacts, it is unlikely
to experience significant tensile stress, due to a lack of con-
finement. Conversely, if a particle has many contacts, it is in
an isotropic compression loading state, and will also have a
low internal tensile stress. The middle case, which describes
particles with a moderate number of contacts, for simplicity
taken here to be equal to Z0, will experience relatively large
internal tensile stress. We therefore define a function ζ that
scales with the coordination number, and is unity at s = s̄.
One promising example is the lognormal distribution,

ζi, j = e
− log (si, j /s̄i, j )

2

2n2 (14)

for which examples are shown in the bottom of Fig. 4 for
three values of the scaling parameter n. We now have all the
ingredients we need to define a crushing event. Crushing will
occur if the applied tensile stress is greater than or equal to
the crushing tensile stress, i.e. σ t

i, j ≥ σ c
i, j then,

σ ∗ ≥
(
si, j
sM

)−3/w

e
log (si, j /s̄i, j )

2

2n2 , (15)

Fig. 4 The cushioning effect. Top an idealisation of loading conditions
on a single particle as a function of coordination number, Z . Bottom the
stress mapping function ζ , relating the macroscopic confining stress to
the maximum internal tensile stress in a particle. Note that the abscissa
is log-scaled

t =
 0

t =
 
t

Fig. 5 The cushioning effect and nearest neighbour rule. Left large
particles are cushioned such that they will not break because of an
abundance of small particles. Right small particles do not carry a sig-
nificant amount of load as they are free to move in the interstitial pore
spaces. Top initial conditions. Bottom result after one iteration of the
stochastic lattice rule, where on the left the small particles in a cell (red)
become even smaller (orange), and on the right the large particles in a
cell (blue) become smaller (pink) (colour figure online)
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where we have defined the normalised loading state as σ ∗ =
σ b/σ c

M . A schematic example of two cases of crushing is
shown in Fig. 5, where the grainsize in cells which pass this
criteria is reduced. To predict the updated grainsize in the
cells, we need to define a fragment size distribution, P(s|s′),
which is the probability of creating a particle of size s given
the crushing of a particle of size s′. In general, it is believed
that the fragment size distribution should not control signifi-
cantly the behaviour of the system [32]. At the same time, the
most commonly used fragment size distributions are either
based on power laws, or Weibull distributions [28,29,34,35].
Both of these distributions are heavy-tailed, and have power
law dependence for small fragments, such that we will always
create new fragments which follow a prescribed grading. To
test the behaviour of the system, two alternative fragment
size distributions are investigated (Weibull and Dirac delta
function):

1. P(s|s′) =
k
λ

(
s

λs′
)k−1

e
−

(
s

λs′
)k

1−e−λ−k ,

2. P(s|s′) = δ(s − cs′), the size is reduced by a constant
value c,

and where k and λ are in general material and size dependent
parameters. Examples of the behaviour of these rules are

shown in Figs. 6 and 7 for a range of initial conditions and
system parameters. In each case, the simulation is run for
X cells, spaced Δs apart. Initial conditions are generated by
sampling X times from F = Δs to F = 1 linearly along the
inverse power law distributions defined by

s = F1/(3−αi ). (16)

where F(s) = ∫ s
sm

φ(s′) ds′ is the cumulative grainsize dis-
tribution function and 3−αi is the initial power law gradient.
The simulation progresses by slowly raising the normalised
applied stress, σ ∗, from an initial value of 0 to its maximum
value.

For the case of constant size reduction, Fig. 6 shows sepa-
rately the effect of varying σ ∗, n, w and c. Increasing σ ∗
increases the applied load, creating progressively smaller
fragments. The collective behaviour progresses towards a
power-law grainsize distribution, with slope α = 1.99. The
width of the stress mapping ζ is controlled by n, which affects
the slope of the produced power law grainsize distribution.
The strength parameter w controls the shape of the tail of
the produced grainsize distribution, but does not affect the
power-law component. The size reduction ratio, c, creates
strong discontinuities in the grainsize distribution if small,

Fig. 6 Evolution of the system for various system configurations using
a constant fragment size distribution P(s|s′) = δ(s−cs′). For all cases
M = 106 and σ ∗ is increased from 0 to 103. The slope of power law part

of the curve is 3−α. Unless otherwise indicated, n = 0.05, c = 0.8 and
w = 6. The title of each subfigure indicates the property being varied
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Fig. 7 Evolution of the system for various system configurations using
a Weibull fragment size distribution. For all cases M = 106 and σ ∗ is
slowly increased from 0 to 103. Unless otherwise indicated, w = 3,

n = 0.05, k = 1, λ = 1 and αi = −2. The title of each subfigure
indicates the property being varied

however globally a power-law grainsize distribution is still
measurable. As the value of c increases, the grainsize dis-
tribution becomes smoother. In all cases, the final grainsize
distribution does not significantly depend on the initial grad-
ing, αi , as previously concluded through discrete element
simulations [32].

Figure 7 shows a similar evolution towards a power-law
grainsize distribution, but using a Weibull fragment size dis-
tribution. During loading, the smallest fragments are created
with a power law grading, dictated by the fragment size dis-
tribution, and significant further crushing does not occur. The
slope of the power law is insensitive to changes of w, n, λ

and αi .
Given that we measure Weibull-distributed fragment sizes

experimentally, it is then instructive to ask: Which of the
two proposed fragment size distributions is more effective
at modelling real systems? The Weibull distribution assumes
that arbitrarily small particles can be created as a result of
comminution. This prediction, together with the requirement
for an additional fitting parameter, leads us to prefer the rule
of constant size reduction.

For both fragment size distributions, the stochastic lattice
model predicts the same final grainsize distribution largely
independent of the initial grading. Such a power law grading

of the grainsize distribution has been measured in cellu-
lar automata [30,31], discrete element simulations [36] and
experiment [16].

Generally fractal dimensions are measured in fault gauges,
confined comminution tests and rock avalanches in the range
of α = 2 – 3 [27,37,38]. The limiting value of α = 2 for
most cases of our model can be explained using the cellu-
lar automaton developed in [27], where every particle in the
systems has the same probability of crushing, given some
additional geometric constraints. If this probability is exactly
0.5, the system develops a fractal dimension of α = 2. If the
probability is 1, the system reaches α = 3, which represents
a system with large strain, where nearest neighbours change
over the crushing period [39]. A distribution with intermedi-
ate fractal dimension of around 2.5 corresponds to a random
appollonian packing, as in [40].

In Fig. 8, α is measured many times from different regions
of a single simulation. A number of cells, L , centred at a, are
chosen, and a best fit of α is measured for the cumulative
grainsize distribution. For values of L > 105, the measured
power law does not change slope significantly. This is an
indication of a fractal distribution [30].

The idea of such final power law grainsize distributions has
been applied in [6] to develop a thermodynamically consis-
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Fig. 8 Fractal dimension α measured as a function of interrogation
window length L . The value of α is measured as a best fit of the cumu-
lative grainsize distribution from s = 10−3 to 10−1, restricted to the
cells between j = a ± L/2. Each line represents a different value
of a = 0, Nx/4, Nx/2 and 3Nx/4. For this simulation Nx = 107,
n = 0.05, w = 6, c = 0.8, αi = −2 and σ ∗ is slowly raised from 0 to
103

tent theory for comminution processes in granular materials
in closed systems. Extension of this or other theories to open
systems where particles can advect has not yet been achieved.

4.2 Comparison with continua

To compare the stochastic lattice rules with a continuum,
we consider the evolution of a large number of cells simul-
taneously, and find averaged properties that represent the
continuum scale. We express the breakage rate, bi , of a single
grainsize fraction sa covering sizes over a range of Δs as

bi (sa)=

∑M
j=1 H

(
σ ∗−

(
si, j
sM

)−3/w

e
log (si, j /s̄i, j )

2

2n2

)
H (

Δs
2 −|si, j −sa |

)
.

Mφi (sa)Δt

(17)

To solve this system globally, we need to sum over j , which
represents local information about the nearest neighbours.
Currently, we do not have a method for representing this
information directly in a continuum model, as we inherently
require information below the continuum scale, and so a new
length scale must be introduced. In the stochastic lattice, the
length scale which controls this behaviour is that over which
the average size is computed, which for all of the simulations
shown here is set to 2Δm, see Eq. 4.

4.3 Cycles of crushing: towards open systems

We can extend this simulation to a quasi-open system by
considering a rearrangement of particles within the stochastic
lattice model, but without true advection.

After the system has reached steady state, and no fur-
ther crushing will occur, we shuffle the system, relocating all

Fig. 9 Cycles of breakage towards an attractor. Top cumulative grain-
size distributions at different numbers of cycles of loading. Each line
represents the grading after a number of crushing-remixing cycles. The
initial grainsize distribution is a power law with slope α = −2. After one
iteration, the system reaches α = 2. After many successive iterations,
the system approaches α = 3

of the nearest neighbours, and resume crushing until a new
steady state is reached. We can continue this cycle until an
ultimate steady state is reached.

We begin with the simulation shown in the top left of
Fig. 6, which has an initial grading defined by αi = −2, and
after one full crushing iteration process has reached α = 2.
After crushing, the values in each cell of the simulation
are randomly shuffled. This is equivalent to experimen-
tally removing the sample from whatever loading device
has crushed the sample, stirring the fragments, and then
placing them back inside the device. At this stage, the sam-
ple is reloaded, which in the case of the stochastic lattice
model means again increasing σ ∗ along the same loading
path. This process is repeated many times. As progressively
more iterations occur, a region of higher slope develops at
larger grainsizes, and this propagates to lower grainsizes with
increasing iterations, as shown in Fig. 9. The final state has
been shuffled and crushed 1000 times, tending towards an
ultimate grading with a new power law gradient of α = 3.

This effect of cycles of crushing towards α = 3 has been
observed experimentally [41], numerically with a crushable
discrete element method [42] and predicted analytically as
the maximum entropy path towards the least efficient packing
of the system [40]. It is remarkable that such a simple system
as this can replicate the statistical properties of the packing
involved in such a complex system.

5 Open systems

In order to model open systems, where particles can advect
between points in space, we need rules for advection. To
be a physically representative model, we must satisfy the
conservation equation for grainsize φ, as shown in Eq. 2.
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We set up our rules for the stochastic lattice model such
that this conservation law is held for some applied velocity
u. The first mechanism we consider is due to segregation.
Towards this end, we begin with the simplest case of segre-
gation and describe bimixtures, where we present a model
similar to that proposed in [43].

5.1 The segregation mechanism

As particles flow they collide, creating new void spaces which
are preferentially filled by smaller particles, as indicated
schematically in Fig. 10. The rate of creation of void spaces
is governed by the shear strain rate, γ̇ [2].

The simplest description of this system in terms of grain-
size is shown on the left of Fig. 11 for a bimixture of sizes
sm and sM , where the swapping frequency f is defined such
that small particles always move down, and large particles
move up. This representation of the was extended to describe
polydisperse materials by using the formulation developed
in [7,20], where it was shown through energy considerations
that if a particle is larger than the local average, it has some
probability of moving up, and conversely if it is smaller than
the average it will move down. Increasing distance in the
s direction from the average will increase the likelihood of
swapping linearly. This is shown on the right of Fig. 11.

We facilitate this movement by swapping the grainsize at
location si, j with that either above, at si+1, j , or below, at

Fig. 10 Bidisperse stochastic lattice.Top schematic representing bidis-
perse segregation in 2D flow down an inclined plane. Bottom the
complimentary 1D stochastic lattice, where large particles and small
particles swap over time

si−1, j , depending on whether it is larger or smaller than the
average size si, j , as defined in Eq. 4. We define the rate of
swapping as

f = ks |γ̇i |(si, j/si, j − 1), (18)

where ks is a positive non-dimensional parameter control-
ling the rate of segregation, and the direction of segregation
is set by the sign of f . The advection of grainsize is then
implemented as

si, j (t + Δt) = si+sgn( f ), j (t)

si+sgn( f ), j (t + Δt) = si, j (t),
(19)

where sgn is the signum operator. We iterate in two half time
steps, alternately applying this rule firstly to all odd rows, and
then all even rows, so that particles are inhibited from moving
very large distances in a single time step. Additionally, we
only allow swapping upwards if the particle is larger than
the one above it, or smaller than the one below it if moving
downwards.

5.2 Bidisperse segregation

To model a simple bidisperse material, we take a single col-
umn of a bimixture (M = 1), of equal proportions of sizes
sm and sM , randomly allocated to cells, and allow it to seg-
regate under simple shear with γ̇ (z) = 1 and ks = 1. The
result is shown in the top left of Fig. 12. We can then run the
simulation with M = 10 and average in the m-direction. The
result of this is shown in the top right of Fig. 12. We can do
this repeatedly, to get an increasingly resolved image of the
process, as shown in the bottom row of Fig. 12 for M = 100
and 1000. With increasing resolution, this converges on the
analytic solution presented in [7] and [3].

Figure 13 shows the average grainsize at each height over
time for two different shear regimes, each for 3 different ini-
tial concentrations of small particles, sm . The top row depicts
simple shear, as in Fig. 12, while the bottom row uses a sim-
plified version of the shear strain rate profile predicted in [7]
for the case of inclined plane flow: γ̇ = √

(1 − z)/s. In each
case, complete segregation is observed, where every large
particle lies above every small particle. The non-uniform
shear strain rate in the bottom case causes non-uniform tran-
sient behaviour towards a steady grading that is the same as
the top case.

As shown in [43], this model represents a simple anal-
ogy of the analytic works done by [2,3] to model bidisperse
segregation, with a simple extension to multicomponent and
polydisperse systems, as introduced in [20,44], and shown
below.
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Fig. 11 Comparison of proposed segregation mechanisms as a func-
tion of gransize s. Left bidisperse rule used previously in [43] Right
polydisperse rule used in [20], where segregation frequency is a func-
tion of distance to the local mean size

Fig. 12 Time evolution of the average grainsize s̄ of a bidisperse simu-
lation with varying M subject to segregation only. All cases have ks = 1
and Nx = 100. Clockwise from Top left Nm = 1, 10, 100 and 1000.
For the case of Nm = 1 we calculate the local average grainsize in the
z-direction, rather than the m-direction. Bottom right Black lines indi-
cate positions of concentration shocks from solution of the equivalent
continuum equation

Fig. 13 Time evolution for bidisperse shear flows subject to segrega-
tion. For all cases ks = 1. Left to right the system is initially filled
with 20, 50 and 80% small particles respectively. Top row simple shear,
where γ̇ = 1. Bottom row inclined plane flow shear condition, where
γ̇ = √

1 − z

5.3 Polydisperse segregation

We can create a polydisperse sample by generating initial
conditions in the same way as previously described for the
breakage stochastic lattice model, using Eq. 16. The segre-

Fig. 14 Time evolution for polydisperse segregation under simple
shear. For all cases ks = 1 and γ̇ = 1.Top to bottom each row represents
a single simulation with initial condition defined by αi = −2, 0 and 2
respectively. Left initial cumulative grainsize distribution at three dif-
ferent heights. The solid red, green and brown lines represents z = 0.9,
0.5 and 0.1 respectively, as indicated on the middle plot. Middle plot of
the average grainsize s̄ over height and time. Right final grainsize distri-
butions, plotted in the same manner as the initial cumulative grainsize
distributions (colour figure online)

gation patterns produced for a range of initial conditions at
constant segregation rate ks = 1 and with γ̇ = 1 are shown
in Fig. 14. Since this is now a polydisperse sample, we can
calculate the grainsize distribution φ(s). On the left hand
side of Fig. 14 are initial cumulative grainsize distributions,
which are homogeneous in the z-direction. During the sim-
ulation, segregation occurs, creating a heterogeneous steady
state condition after some time. These grainsize distributions,
which now vary with height, are shown on the right hand side
of the same figure.

Averaging over all M cells at a given height i , we can
express the mean segregative velocity ui of a single grainsize
fraction centred at sa from all cells at height i in a time Δt
as

ui (sa) = 1

M

M∑
j=1

fi, j (sa) = ks |γ̇i |
M

M∑
j=1

(
sa
si, j

− 1

)
. (20)

We have included the local average grainsize s̄i, j in the
formulation so that we know which particles are locally small
or large. As particles are being swapped between heights—
between representative volume elements at the continuum
scale—we only require a single average grainsize per height,
and can in this case freely extend the neighbourhood domain
over which we find the average grainsize s to include every
cell at height j , labelling it now si = 1/M

∑M
j=1 si, j . In this

case, the mean velocity can be expressed as

ui (sa) = ks |γ̇i |
(
sa
si

− 1

)
. (21)
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Compare this with the analytic description of the segregation
velocity with no diffusion as predicted by [7] for a continuum
with internal grainsize coordinate s,

u(s) = |γ̇ |g cos θ

c

( s
s

− 1
)

, (22)

where c is a fitting parameter, g is the acceleration due to
gravity, and θ is the angle of the plane down which flow is
occurring. As shown in [45], lattice models can successfully
be used as a coarse finite differencing method to describe
systems such as these without resorting to flux limited finite
volume schemes, as would otherwise be necessary [46,47].

This stochastic lattice model, together with the rule for
remixing, which will be shown next, represents the simplest
description of the analytic model presented in [7].

5.4 Remixing

In nature we rarely see such perfect segregation as that pic-
tured above. This is due to the random fluctuation of particles
as the flow propagates down slope. As has been done before
analytically [46], we can capture this effect by introduc-
ing remixing into the flow. For the simplest case, we allow
particles to swap randomly either up or down with some fre-
quency, given by a constant D/Δz2. At this stage we let this
probability be independent of the shear strain rate γ̇ , although
a strong dependency has been observed [48] in experiments.
With frequency of swapping controlled by the diffusivity, D,
swapping is implemented by drawing a discrete i.i.d. random
variable, Y , from the two integer values {−1, 1}, and using

si, j (t + Δt) = si+Y, j (t)

si+Y, j (t + Δt) = si, j (t).
(23)

An example of the mixing rule acting on a single column
of cells over time is shown in Fig. 15. Initially, the system
is perfectly segregated, but over time the systems becomes
randomised due to the presence of mixing. The characteris-
tic time for mixing to occur is the inverse of the diffusivity
D/H2, where H = NxΔx .

We are effectively describing a system of cells undergoing
Brownian motion, whereby particles move by the application
of random forces over time scales that are short relative to
the motion of the particle. When considered over long time
scales and large numbers of particles, this is analogous to
Fickean diffusion [48]. This is one of a large set of cellular
automata that exist to model pure diffusion [49].

As in the case of segregation, this process can be aver-
aged over the m-direction to describe the evolution of the
average grainsize at any height over time. By increasing M ,
we can increase the smoothness of our solution. Figure 16

Fig. 15 An illustration of the mixing mechanism. Ten cells, initially
segregated with all large particles (blue) above small particles (yellow),
subjected to the mixing mechanism only. Over time, the system reaches
a disordered state (colour figure online)

Fig. 16 Time evolution of the average grainsize s̄ of a bidisperse simu-
lation with varying Nm subject to mixing only. All cases have D = 0.01
and Nx = 100. Clockwise from top left Nm = 1, 10, 100 and 1000. Bot-
tom right solid lines indicate contours from solution of the equivalent
continuum equation

shows the same system as Fig. 15, initially segregated, that
mixes over time to create a homogeneous system, but now
for increasing M . This diffusive behaviour can be described
at the continuous limit using Fick’s first law of diffusion,

∂φ

∂t
= D

∂2φ

∂z2 . (24)

6 Coupled problems

We now have three distinct processes which can be described
simultaneously in a single simulation. These have all been
shown above with their analogous continuum description, yet
not in all cases could a direct link be shown. For the case of
comminution, an internal length scale governing the spatial
distribution of grainsize over a sub-continuum length scale
was required.
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Fig. 17 Coupled comminution and mixing. For all cases, σ ∗ = 103,
n = 0.05, c = 0.8, w = 6, Nx = 100 and Nm = 1000.Plot shows value
of the best fit to the power law part of cumulative grainsize distribution
at t = 1, 10 and 100. Over time, the system moves from the initial
grading (α = −2) towards a final value of α ≈ 3

As all of the mechanisms previously described have been
created in the same framework, we can simply run a stochas-
tic lattice model which includes multiple phenomena at the
same time. As will be shown in this Section, we can investi-
gate the interactions between the mechanisms by varying the
parameters which control their effects.

6.1 Comminution and mixing

We begin with a stochastic lattice model that includes both
comminution and mixing. This system represents an exten-
sion of the cycles of crushing pictured in Fig. 9, but now with
true advection. In this case, as in Fig. 9, we expect that after
a short time relative to the diffusive time, the system will
reach α f = 2, as significant mixing has not yet occurred.
At longer times, the system will approach α f = 3, and its
final grading. This effect was explored in [20], and here is
captured in Fig. 17, where the diffusive time is controlled by
the ratio D/H2.

For vanishingly small diffusivities, the system will still
approach α f = 3, but only after very long periods of com-
minution. Conversely, at very large diffusivities, the system
passes α f = 2 very rapidly, and approaches α f = 3 in a
relatively short time.

6.2 Segregation and mixing

In flows of polydisperse granular materials where comminu-
tion does not occur, we can model the evolution of the
grainsize distribution as being comprised of segregative and
diffusive remixing components. This occurs in many indus-
trial mixing processes, and well describes levee formation
and runout characteristics in landslides [50,51]. At higher
speeds remixing increases, suppressing segregation, while at

Fig. 18 Bidisperse segregation under simple shear with diffusion. Left
to right increasing diffusivity D = 0.002, 0.01 and 0.05 with con-
stant segregation coefficient ks = 1. Increasing the mixing coefficient
smooths out concentration shocks in the spatial direction, giving more
physically realistic solutions

low speeds segregation can play a dominant role in the flow
behaviour.

The effect of coupling mixing and segregation in a bim-
ixture can be seen in Fig. 18, where increasing diffusivity
D smooths out the concentration shock between the two
phases of large and small particles. This can be treated in an
identical manner for polydisperse mixtures. This has been
shown analytically for bidisperse systems in [46] and vali-
dated experimentally in [52].

Generally, solving these systems of equations numeri-
cally requires the suppression of spurious numerical diffusion
with sophisticated finite differencing schemes [47]. This
behaviour stems from the non-linearity of the underlying
equations, but is not an issue for numerical solutions obtained
using stochastic lattice models [45].

6.3 Segregation and comminution

In many situations, segregation and comminution occur
simultaneously in a flow situation, such as in the grain
milling depicted in Fig. 2. In other cases, it is not even clear
if segregation has occurred, yet particles are advecting in
space and strong comminution is observed, such as in earth-
quake faulting and snow avalanches. In many of these cases,
we observe log-normal grainsize distributions, rather than
power law distributions, which exist at all depths of flow.
Unlike power law grainsize distributions, log-normal distri-
butions contain a characteristic size directly related to their
mean value. As a result, the existence of depth-dependent
mean values of log-normal grainsize distributions in crush-
able polydisperse granular flows in nature is reminiscent of
unconstrained size-dependent segregation competing with
size-independent comminution. A log-normal distribution is
one that obeys the following scaling for the cumulative grain-
size distribution FLN ,

FLN = 1

2
erfc

(
− log s − μ

σ
√

2

)
, (25)

where μ and σ are location and scale parameters, and erfc is
the complimentary error function.
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Fig. 19 A crushable flow with two mechanisms: segregation and com-
minution. Initially, the system is homogeneous, being a polydisperse
sample with initial grainsize distribution defined by αi = −2. Five
cases are considered with varying σ ∗ = 101, 102, 103, 104 and 105.
Right spatiotemporal evolution of the average grainsize. Left cumula-
tive grainsize distribution at three points in the flow, corresponding to
the circles in on the right. Lines are best fit lognormal distributions

In the results shown in Fig. 19, both segregation and
comminution mechanisms are present. For all cases, log-
normal cumulative grainsize distributions are observed over
all depths. When tested against a null hypothesis, the assump-
tion that the data is log-normally distributed gives p-values
from the bottom half of generally <0.001, as measured using
a normalcy test [53].

As expected, increasing the applied stress, σ ∗, increases
the level of particle crushing, producing progressively smaller
fragments. The time to reach a steady state in terms of the
average grainsize, s̄, however is approximately constant. It is
evident that significant changes in the grainsize distribution
will not occur indefinitely, and some steady state is reached
in a finite time.

6.4 Segregation, mixing and crushing

As shown previously in [20], we can now couple all three
mechanisms and observe the evolution of the grainsize dis-
tribution as all of the constituent mechanisms interact. Each
time step, we first check each cell and if the breakage rule is
met, we change the cell’s grainsize. Secondly, we iterate over
all of the cells and swap them with a neighbour if the seg-
regation rule is met. Finally, we again iterate over all cells
and if the diffusion rule is met, we swap randomly with a
neighbour.

We now have a system that models avalanche and land-
slide flow, where particles at the base are sheared and crush,
creating a layer which may enhance flow, such as in Fig. 19.
The inclusion of mixing in the system, as shown in Fig. 20,

Fig. 20 A crushable flow with all three mechanisms. Initially, the sys-
tem is homogeneous, being a polydisperse sample with initial grainsize
distribution defined by αi = −2. Top to bottom three cases are con-
sidered with varying D = 10−4, 10−2 and 100. Right spatiotemporal
evolution of the average grainsize. Left cumulative grainsize distribu-
tion at three points in the flow, corresponding to the circles in on the
right. Lines are best fit lognormal distributions

enhances the spread of sizes produced by comminution.
Again, log-normal cumulative grainsize distributions are
measured, which represent those found in many geophysi-
cal processes, such as in snow avalanches [54], pyroclastic
flows [55,56], debris flows [57,58], and rock avalanches [59].

6.5 An equivalent continuum model

Considering conservation of mass alone, we can express all
three mechanisms in a heterarchical continuum form as

∂φ

∂t
+ ks

∂

∂z

(
φ|γ̇ |

( s
s̄

− 1
))

= D
∂2φ

∂z2

+ bφ −
∫ sM

s
P(s|s′)b(s′)φ(s′) ds′. (26)

This population balance model differs from the stochas-
tic lattice model in the sense that the internal coordinate s
does not retain information about local neighbours that is
present when using m. Because of this, we cannot at this
stage describe the comminution process concurrently with
segregation and mixing in a continuum form. This omission
gives an important insight into the use of continuum theories
to represent internally (i.e. within the representative volume
element) spatially correlated material.

For the mechanisms of segregation and mixing, the length
scale representing the local neighbourhood is not an impor-
tant consideration. However for comminution, it must be
included as part of the model to enable us to predict the
correct final distribution.
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7 Conclusions

We have developed the paradigm of a heterarchical mul-
tiscale model, in this instance formulated as a stochastic
lattice, that can successfully capture microscale continuum
properties at the macroscale. Two alternative formulations
of the internal coordinate choice at the microscale were dis-
cussed, and it was shown that describing just the grainsize
distribution allows us to successfully model segregation and
mixing, but the addition of information about the local par-
ticle arrangement allows for the modelling of comminution.
While work is still needed to bridge the gap between the two
proposed internal coordinates analytically, there is promise
that in the near future these mechanisms can be described
purely as continuum properties, and that these ideas could
inform new, micro-inspired constitutive frameworks.

The stochastic lattice developed here was shown to repro-
duce the behaviour of segregation, mixing and comminution,
both in isolation and in combination. By assembling all three
stochastic lattice models together we were able to explore
the interactions between these phenomena. One outcome is
that in closed systems, crushable granular material are lim-
ited by power laws, however during flow the interaction with
segregation causes the system to be limited by log-normal
distributions.

The success of this stochastic lattice model is that it
enables us to study the evolution and limits of the grain-
size distribution in a variety of scenarios. In the future, we
envisage that heterarchical models can be used to represent
a wide variety of multiscale phenomena.
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