
FACULTY OF

ENGINEERING &

INFORMATION

TECHNOLOGIES

Introduction to Computational Methods

Acknowledgement : Some slides from Validation and Verification lectures by Dr. Vladimir Titarev

Ben Thornber (ben.thornber@sydney.edu.au

mailto:ben.thornber@sydney.edu.au

Outline

2

Cover the key elements of ensuring that you can demonstrate a

credible computational analysis:

› Code Verification

› Calculation Verification

› Validation

We’ll have some examples from research within the

compressible flows group.

Compressible CFD Group

• Develop new numerical methods and

governing equations

• Very high order accurate methods

• Steady and Unsteady Turbulence Modelling

• Multiple compressible species

Algorithms developed are used in institutions /

CFD codes worldwide

1. Introduction

› Our previous examples require:

- A mathematical model of the physical system (reduction)

- A numerical implementation of that mathematical model

- Verification that the numerical implementation is correct

- Validation that the mathematical model represents reality

- Understanding of the computational error

› You must be able to demonstrate all of the above for your results to

be taken as publishable

1. Introduction

Code Verification answers the question "are we solving the

equations correctly?"

- estimates the magnitude of the error in the computational implementation

of the mathematical model.

- compares the numerical methods used in the code to exact analytical

results.

- tests for computer programming errors.

Validation answers the questions "are we solving the correct

equations?"

- assumes that the numerical solution of the chosen physical model is

sufficiently accurate

- estimates the magnitude of the difference between the results of the

- computational simulation and physical reality.

- compares the computed results with experimental results.

1. Introduction

› Mathematics or Engineering/Physics?

› Mathematics is a tool of science which exists by itself and it is `true’

regardless of any correspondence to the natural word.

- Verification is seen to be essentially and strictly an activity in

mathematics, namely the numerical analysis.

- Validation is essentially and strictly an activity in science and engineering:

physics, chemistry, fluid dynamics etc.

› Example of a conceptual modelling assumption would be assuming

incompressibility for a simulation of flow over a supersonic aircraft

- If a user incorrectly applies the code the results will be wrong but this

does not mean that Verification fails.

- In this case the lack of agreement with experiment is not a code error, but

a poor choice of governing equations thus it fails the Validation.

2. Code Verification

You have developed the following mathematical model of a fluid flow:

You then define an algorithm to solve the equations. How do you

verify the code?

2. Code Verification

We want to ensure that the following errors are either as expected or
fully understood:

1. discretization errors

2. programming errors (mistakes)

3. Computer round-off errors

Programming errors (mistakes):

- these can be detected by grid convergence studies for problems with
exact solutions.

- For non-analytical problems see method of manufactured solutions.

Computer round-off errors:

- Normally these ones are not a problem

- However, these are an issue for very high order methods because they
can preclude convergence on fine meshes

- Problems which have small perturbations of large numbers

2. Code Verification

Oberkampf 2002a

2. Code Verification

Define an algorithm to compute the first derivative at second order
accuracy:

𝜕𝑦

𝜕𝑥
≈
𝑦 𝑥 + Δ𝑥 − 𝑦(𝑥 − Δ𝑥)

2Δ𝑥

To verify the implementation, we assume 𝑦 = cos 𝑥 and run our

algorithm for 𝑥 =
𝜋

4
, choosing Δ𝑥 = 2𝑜, 4𝑜𝑎𝑛𝑑 8𝑜

Convergence rate defined as log
𝐸𝑟𝑟𝑜𝑟2

𝐸𝑟𝑟𝑜𝑟1
/ log

Δ𝑥2

Δ𝑥1

𝚫𝐱
(𝐝𝐞𝐠)

𝚫𝐱
(𝐫𝐚𝐝)

CD Error Convergence

rate

8 0.139626 -0.706532529 0.0005743

4 0.069813 -0.706963192 0.0001436 1.999736316

2 0.034907 -0.707070882 3.59E-05 1.999934079

2. Code Verification

The previous slide is fine for a single point estimation

Normally we need an error measure for a solution as an array

Now we use ‘norms’

𝐿𝑝 = Δ𝑥

𝑖=1

𝑛𝑝𝑡𝑠

𝑓𝑖 − 𝑓(𝑥𝑖)
𝑝

1/𝑝

Where 𝑓𝑖 is the numerical approximation and 𝑓(𝑥𝑖) is the exact
solution.

Here we usually look at p=1,2 and ∞. What do these represent
qualitatively?

2. Code Verification

Once you have the norms, you can look at verify the actual convergence
compared to expected

We expect an error proportional to Δ𝑥𝑛, i.e. 𝐿~𝐶Δ𝑥𝑛

Run two computations, one with mesh size Δ𝑥𝐴, the other with mesh size Δ𝑥𝐵.

Gain two errors, 𝐿𝐴
1 and 𝐿𝐵

1

We can say:

𝐿𝐴
1~𝐶Δ𝑥𝐴

𝑛

𝐿𝐵
1~𝐶Δ𝑥𝐵

𝑛

With rearranging to gain ‘n’:

𝑛 = log
𝐿𝐴
1

𝐿𝐵
1 / log

Δ𝑥𝐴

Δ𝑥𝐵
The measured order of convergence must equal that expected. Otherwise you
have an error.

Note that for Implicit schemes you must ensure that the error is
not impacted by the approximate matrix inversion which most of

these methods employ

Michael Groom: Code Verification

How to conduct a grid convergence study:

• Define grids to be used in the study.

• Typically want at least 3 different grid resolutions where each subsequent

grid has 2x the number of points in each direction i/j/k.

• Commonly use grids with 2k number of points i.e. N=32,64,128,256,...

• Calculate expected order of convergence.

• Based on order of accuracy of numerical approximations in the algorithm.

• Also need an analytical solution.

• For hyperbolic PDEs commonly use problems based on linear advection.

• Quantify error on each grid using norms. Typically L1, L2, LInf are used.

• Calculate order of convergence to the analytical solution as shown on

previous slide.

2. Code Verification

Example:

• Governing equations: 2D Euler equations.

• Numerical method: 2nd order Godunov-type finite volume method.

• Initial condition: Isentropic vortex.

• Analytical solution: Initial condition propagates with constant velocity.

2. Code Verification

Example:

• Calculated order of convergence is sufficiently close to the expected

order of accuracy.

• This indicates that our numerical method has been implemented

successfully.

N L1 L2 LInf O(L1) O(L2) O(LInf)

32x32 9.60E-01 4.76E-01 3.75E-01 - - -

64x64 5.84E-01 3.29E-001 3.13E-001 0.72 0.54 0.26

128x128 1.46E-01 7.80E-002 7.00E-002 2.00 2.08 2.16

256x256 3.88E-002 2.08E-002 1.63E-02 1.91 1.90 2.10

512x512 9.90E-003 5.28E-003 4.08E-03 1.97 1.98 2.00

1024x1024 2.48E-003 1.32E-003 1.04E-03 1.99 2.00 1.98

2. Code Verification

Some other advice:

• If no analytical solution is available:

• Verify against results from another previously verified code.

• Method of manufactured solutions.

• Unsteady problems may require careful initialisation.

• e.g. finite volume solvers require cell averaged values of the initial

condition.

• Try to avoid analytical solutions with discontinuities.

• Can affect order of convergence.

• Slope/flux limiters used to prevent oscillatory behaviour in high-order

methods can also affect convergence.

3. Verification of the Calculation

It is distinctly different from Verification of the Code.

› the use of a Verified Code is not enough.

› A code may be rigorously verified to be (say) 2nd order accurate,

but when applied to a new problem, this fact provides no estimate

of accuracy or confidence interval.

› It is still necessary to band the numerical order for the individual

calculation

In other words, you want an error estimation for your given calculation

3. Richardson Extrapolation

› We assume the discrete solution f to have a series representation in

grid spacing h of

𝑓 ℎ = 𝑓𝑒𝑥𝑎𝑐𝑡 + 𝑔1ℎ + 𝑔2ℎ
2 + 𝑔3ℎ

3 +⋯

› The functions 𝑔𝑖 are defined in the continuum and do not depend on

any discretization.

e.g. For a 2nd-order method we have 𝑔1 = 0

› The key idea is to combine two separate discrete solutions from two

uniform grids: f (h1) (fine grid) and f (h2) (coarse grid), to eliminate

the leading order error terms in the assumed error expansion, i.e.

- solve for 𝑔2 at the grid points

- substitute this in to the equation for f

- finally obtain a more accurate estimate of 𝑓𝑒𝑥𝑎𝑐𝑡.

3. Richardson Extrapolation

› The result is given in the original 1927 paper for ℎ2expansion:

𝑓𝑒𝑥𝑎𝑐𝑡 = 𝑓1 +
𝑓1 − 𝑓2
𝑟2 − 1

Where 𝑟 = ℎ2/ℎ1.

› The most common use of the method is with grid doubling or halving (this is

essentially the same). With r = 2 we get

𝑓𝑒𝑥𝑎𝑐𝑡 ≈
4

3
𝑓1 −
1

3
𝑓2

› This is 3rd-order accurate in the general case and becomes 4th order

accurate if 𝑔3 = 0, as is the case with e.g. the use of centred differences

› The concept of the ‘Grid Convergence Index’ generalizes this to non-

integer refinement levels and is the ASME default for reporting grid

convergence studies.

› In FEA h (space) and p (order) refinement studies are both employed.

3. Example in FEA

L. KWAŚNIEWSKI, 2013

4. Validation

Validation is the process of determining the degree to which a model

is an accurate representation of the real world from the perspective of

the intended uses of the model.

The fundamental strategy of Validation involves

- quantification of the numerical error in the computational solution,

- estimation of the experimental uncertainty,

- comparison between the computational results and experimental data.

- We do not assume that the experimental measurements are more

accurate that the computational results.

- the estimation process for error and uncertainty must occur on both sides

of the coin: mathematical physics and experiment.

4. Validation

Oberkampf 2002a

4. Validation

The building-block approach:

- divide the complex engineering system of interest into a three or more

progressively simpler tiers;

- these are: subsystem cases, benchmark cases, and unit problems.

- Results are compared at multiple degrees of physics coupling and

geometric complexity.

The approach is clearly constructive in that it recognizes that

- there is a hierarchy of complexity in systems and simulations

- the quantity and accuracy of information that is obtained from

experiments varies radically over the range of tiers.

4. Validation

Validation hierarchy construction should:

- Carefully disassemble the complete system

- Identify experiments that are attainable and practical

- Identify experiments where validation quality characterization and

measurement data can be obtained

- The top of the hierarchy focuses on the application of interest

- The bottom of the hierarchy focuses on separate-effects physics

A good hierarchical tier construction should accomplish two tasks:

- to carefully disassemble the complete system into tiers so that each

lower-level tier has one less level of physical complexity

- selection of individual validation experiments in a tier that are practically

attainable and able to produce validation-quality data

4. Validation hierarchy example

A complex, multidisciplinary system: an air-launched, air-breathing,

hypersonic cruise missile.

We assume that the missile has an autonomous guidance, navigation

and control (GNC) system, an on-board optical target seeker, and a

warhead.

We refer to the missile as a complete system and to the following as

systems: propulsion, airframe, GNC and warhead.

The launch aircraft is not included because his location would be at

the next higher level, i.e. above cruise missile.

We note that the structure shown is not unique.

4. Validation hierarchy example

4. Validation experiments at each Tier level

The aero/thermal subsystem simulation. It would contain

- the actual thermal protective coating over the metal skin of the missile,

- the actual metallic skin of the vehicle,

- much of the substructure under the skin of the vehicle,

- all of the functional/lifting surfaces,

- and the internal flow path of the propulsion system.

It would not contain any other hardware inside the vehicle unless some
particular heat conduction is crucial

The validation experiment for the structural dynamics code would contain
every piece of the hardware from the missile because very part of the
structure is mechanically coupled

It would not contain

- warhead and functional propulsion system

- mass-mockups may be used instead

4.Validation hierarchy example

A complex, multidisciplinary system: an air-launched, air-breathing,

hypersonic cruise missile.

We assume that the missile has an autonomous guidance, navigation

and control (GNC) system, an on-board optical target seeker, and a

warhead.

We refer to the missile as a complete system and to the following as

systems: propulsion, airframe, GNC and warhead.

The launch aircraft is not included because his location would be at

the next higher level, i.e. above cruise missile.

We note that the structure shown is not unique.

5. General Advice

Before undertaking computations using techniques outside the direct scope of
your PhD discuss it with an expert within that domain. Clarify clearly if what you
are undertaking is ‘difficult’

Start with a small computation to check that your results are approximately
correct before using half a supercomputer. Also try to avoid using a
supercomputer if you can reduce your problem by e.g. symmetry

For all computations the first step should be verification, unless you can be
certain it has already been done.

Steady state problems:

- Check choice of physical model/governing equations

- Check the required levels of convergence if the solution is implicit and utilises
approximate matrix inversions

- Ensure results are grid converged and quantify error (Richardson/GCI)

- Validate against appropriate experiments or, if available, analytical solutions.

- Be critically aware of the experiments/real world. Was it actually steady, or are you
comparing to time-averaged data? What is the modelling which allowed you to represent
it as steady state? What are the key assumptions underlying that model?

- Extract and plot experimental bounds along with your numerical results.

5. General Advice

Unsteady problems:

- Check choice of physical model/governing equations

- Check the required levels of convergence within each time iteration if the
solution is implicit and utilises approximate matrix inversions

- Check the expected sampling time required to gain statistically converged
solutions

- Determine a sampling rate which will capture the expected physical
fluctutations

- Your computation will gain one realisation of physical reality. It is
important to understand whether that is sufficient to compare with
experiment. It is not unusual for cases to require tens or hundreds of
independent realisations to gain an accurate average.

- Be critically aware of the approximations in the experiments/real world,
particularly boundary conditions

- Extract and plot experimental bounds along with your numerical results
with numerical errors clearly highlighted.

Daniel Linton: Representing Uncertainty in CFD

- There is a tendency to overlook uncertainty when presenting

computational results

- Unlike experimental work there is no uncertainty associated with

instrumentation, but the uncertainty due to incomplete convergence can

and should be quantified

- Running an unsteady simulation until complete statistical convergence

can be infeasible - particularly when attempting to resolve turbulence

- Confidence intervals are one way of representing the uncertainty in some

parameter of a distribution

- See, for example, Kreyszig’s Advanced Engineering Mathematics for

instructions and conditions associated with calculating confidence

intervals

- As an example, CONF0.99 𝑈 − Δ𝑈 < 𝑈 < 𝑈 + Δ𝑈 indicates a

probability of 99% that the true mean velocity is within ±Δ𝑈 of the mean

of the sample set

Representing Uncertainty in CFD

Mean of Reynolds stress component showing 99% confidence interval

Representing Uncertainty in CFD

Convergence of mean velocity at sample point showing 95% confidence interval

http://www.mathsisfun.com/data/images/normal-distrubution-large.gif

Asiful Islam: Real Examples

Quantification of uncertainty in correlated data – Asiful

› Need computational models to predict flows – mean and unsteady

› What is our level of uncertainty?

› Is it enough to invoke Standard Normal Distribution?

- Central Limit Theorem

› Is the data independent?

Real Examples

Real Examples

› What are the integral length

and time-scales present?

› Autocorrelation –

similarity of observations

relative to time-lag between

them.

Real Examples

› How long does a simulation

take to ‘converge’?

› What is the minimum clock-

time we need to reach

acceptable mean?

› How does this compare with

confidence bounds assuming

independent data?

6. Conclusions

› Given you a brief introduction to some of the challenges computational methods

› Hopefully these will give you a sufficient base to use computation tools
competently and avoid falling into the ‘crap in, crap out’ trap:

1. Don't just run a simulation then believe it immediately. Follow the Verification
and Validation procedure outlined. Compare against experiment, previous
simulations (published) or theory - even at a coarse grid resolution.

2. Don't start with the largest grid you can afford. This will only end up with you
running a simulation for a week then finding out that it is rubbish. Start very
small to check boundary conditions, then work up from there. Start simple
and ideally in 1D.

3. Be very self-critical. 1st order solutions are not accurate. Unconverged
solutions are not accurate. Many physical models are gross simplifications

4. Accepting unexplained results always ends in disaster. Questioning them
either ends in improved understanding where it was missing, or a publication!

5. Look at the literature - see what is already out there. This can save you
weeks of work.

Useful References

1. W.L. Oberkampf and T.G. Trucano. Verification and validation in

computational fluid dynamics. In Sandia report SAND2002-0529,

page 124, 2002.

2. P. J. Roache. Quantification of uncertainty in computational fluid

dynamics. Annu. Rev. Fluid. Mech. 1997. N. 29 pp. 123-160.

3. P.J. Roache. Verification and validation in computational science

and engineering. 1998.

