
Properties of sub-diffraction limited
focusing by optical phase conjugation

M. J. Steel1, Benjy Marks1 and Adel Rahmani2
1 MQPhotonics Research Centre, Dept of Physics and Engineering and
Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS),

Macquarie University, NSW 2109, Australia
2 Dept of Mathematical Sciences, University of Technology, Sydney, NSW 2007, Australia

msteel@physics.mq.edu.au

http://www.physics.mq.edu.au/research/phottheory

Abstract: Recent work has demonstrated sub-diffraction limited focusing
using time-reversal mirrors and sources in scattering media at microwave
frequencies. We numerically investigate the possibility of observing
analogous effects in the optical domain using small cylindrical scatterers
of realistic dielectric materials combined with an enclosing optical phase
conjugate mirror in two-dimensional geometries. Such focusing is possible
but appears not to significantly exceed the focusing available from an
equivalent homogenized material, and is highly sensitive to precise scatterer
configuration.
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1. Introduction

Focusing electromagnetic radiation below the diffraction limit (focusing to a spot size of less
than λ/2 for wavelength λ ) is of increasing importance in optics and drives much of the current
interest in nanooptics and plasmonics [1, 2]. Important applications of sub-diffraction limited
(SDL) resolution include nanolithography [3] and in-vivo imaging of biological systems. For
the former, SDL focusing is required to obtain the finest resolution possible from UV lithogra-
phy (for which the sources can not get much shorter in wavelength). For the latter, important
information is available from resonances in the visible spectrum but UV illumination could be
harmful to the subject, preventing the use of shorter imaging wavelengths.

Most approaches to achieving SDL resolution involve coupling to local evanescent fields
since propagating waves, while detectable in the far-field, have an upper bound to their allowed
wavevectors, and therefore cannot transport high spatial frequency information. Evanescent
fields are not limited in transverse wavevector and so in principle allow much higher resolution,
but of course the energy in these modes is strongly localized near the scatterer under study.
Therefore the key to progress in SDL imaging has been the precise design of structures to
excite and tailor evanescent fields. For example, near-field scanning optical microscopy exploits
sub-micron diameter fiber tapers, often with metal coatings [4]. Other strategies use carefully
designed grating structures and illumination conditions [5–9]. In general, the more accurate
the fabrication of near-field coupling structures, the more controlled and effective is the SDL
imaging.

A surprising alternative to this strategy has recently emerged from the field of time-reversal
focusing [10–13] (a subject which is rather better known in acoustics than electromagnetics).
In time-reversal systems, the goal is to focus wave energy onto a small region, with the incom-
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ing waves passing through an intervening highly-disordered multiple-scattering medium, the
detailed structure of which is unknown. For elastic waves and microwaves, this can be accom-
plished as illustrated in Fig. 1. In Stage 1 at left, a radiating source (blue) emits waves which
are scattered by random objects (black) surrounding the source. The outgoing waves are de-
tected by an array of transducers in the far-field (green) enclosing the target, so that the set of
voltages recorded by the transducers effectively contains detailed information about the inter-
vening scattering medium. In Stage 2, the source is switched off and the detected signal at each
transducer is reversed in time, amplified and used to excite a new wave (right part of Fig. 1).
Provided the medium is reciprocal (lossless and non-magnetic) the time-reversed wave focuses
back to the target as the initial phase evolution is undone. The transducer array is thus a “time
reversal mirror” (TRM). Note the TRM need not completely enclose the region under study: in
some cases, the TRM array is localized but the whole system is surrounded by highly reflect-
ing walls [14]. In other demonstrations however, the TRM has a genuinely finite aperture, and
some wide-angle information is lost. Such schemes have been demonstrated in laboratory [10]
and marine acoustics [15] and in microwave systems [16, 17], and have been shown to achieve
diffraction-limited focusing. In the optical domain, we cannot of course obtain a direct phase-
sensitive record of the received electric field, so a literal TRM is impossible. However, the
concept of “optical phase conjugation”, for example through four wave mixing, has long been
used to similar effect [18–21]. For harmonic waves, which is the case considered in this work,
optical phase conjugation and time reversal are equivalent [22]. Phase conjugate mirrors have
recently been used to produce significant improvement in imaging through highly-scattering
biological materials [23, 24], though not beyond the diffraction limit.

Fig. 1. Schematic of time reversal or phase-conjugate focusing in a disordered scattering
medium. In Stage 1 (left), a dipole source emits waves which are multiply scattered be-
fore being detected in the far field. In Stage 2 (right), a TRM (green squares) or a phase-
conjugate mirror emits a conjugate wave which focuses in the vicinity of the original
source.

1.1. Sub-diffraction limited focusing with TRM

Now consider the quality of the time-reversed focus spot, assuming a point source as the origin
of the outgoing waves in Stage 1. Since high spatial frequency evanescent components of the
radiated field die out close to the source, they can never reach the far-field TRM and so can
not be reconstructed at the source in the return stage. We may thus expect that the focus spot
diameter D produced by a TRM system is limited to the diffraction limit D≈ λ/2. (Indeed, even
if we admit that in a noiseless system the evanescent waves technically do reach the TRM, the
time reversed configuration does not typically include a sink—the time-reversed equivalent of
the original source. This absence also prevents reconstruction of the original field to better than
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the diffraction limit [28]. We return to this point in more detail in Section 3.) Nevertheless, in
an elegant microwave experiment in 2007, Lerosey et al [14] showed that a TRM may produce
focusing below the diffraction limit, if the source is surrounded by a random array of strong
scatterers in the near field region. In the experiment, a set of coaxial antennae operating at
λ = 0.122 m were surrounded by an irregular comb of numerous copper wire scatterers and
placed inside a closed box of order 1 m in size containing a small TRM. The authors were able
to distinguish between the antennae when separated by only λ/30, far below the diffraction
limit. Lerosey et al interpret this result in terms of the evanescent waves being scattered by
the wires into propagating waves which reach the far-field TRM. They thus contribute to the
incoming time-reversed wave, and in the near field are re-scattered back into the evanescent
components required to reconstruct a sharp focus.

It has subsequently been shown [25] that for a perfect TRM that encloses the domain, the
time-reversed electric field ETRM(r) can be expressed in terms of the Green function of the
system for a source at r0:

ETRM(r) ∝ Im[G(r,r0)]. (1)

In the time harmonic regime, the time-reversed field is thus a standing wave (due to the in-
terference of incoming and outgoing waves,) and its value at the source is proportional to the
local density of electromagnetic states (LDOS). Since the LDOS is proportional to the emission
rate of the dipole [26] (in the weak-coupling regime relevant here,) this result implies that the
focusing is improved by arrangements of scatterers that promote emission from the source.

1.2. Objectives—TRM focusing in the optical domain

The experiment of Ref. [14] is an impressive demonstration in the microwave domain, but it
is in the optical that new strategies for SDL resolution are most in demand. Thus one wonders
to what degree similar focusing can be achieved for optical waves. This question is the sub-
ject of the present work. A shift to the optical domain introduces a number of changes. Firstly,
as absolute detection of optical phase is impossible, a literal TRM is also impossible. Here
we concentrate on time harmonic waves, so that the TRM becomes a phase conjugate mirror
(PCM)—that is, a material that reflects an incoming wave with a reversed phase profile, repre-
sented by taking the complex conjugate of the incoming electric field. The implementation of
the PCM will not concern us here, though it might be a strongly pumped Kerr or photorefrac-
tive medium. Secondly, while for microwaves, copper wires are ideal conductors (and strong
scatterers for E polarized along the wires), metals are lossy in the optical domain and dissi-
pation breaks the time reversal symmetry. Therefore we have studied predominantly dielectric
scatterers, with physical refractive indices limited to n . 6.

In this paper, we consider a range of two-dimensional (2D) scattering geometries using nu-
merical simulation and explore the different focusing regimes. After describing our numerical
procedure in Sec. 2, in Sec. 3 we illustrate the basic focusing mechanism and show the impact
of an incomplete PCM. In Sec. 4, we establish that there are two distinct focusing regimes—a
homogenization regime and a scattering regime—and that the behavior is strongly polarization
dependent. In Sec. 5, we consider the role of fluctuations in the mirror and scatterer locations,
and metallic components.

2. Method of calculation

We have performed a large range of simulations using two-dimensional (2D) Finite-Difference
Time-Domain (FDTD) simulation. A harmonic dipole point source is located inside a cloud
of randomly arranged identical cylindrical sub-wavelength scatterers. The individual scatterers
are characterized by their radius as and refractive index ns. The background index has the value
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nb = 1, unless otherwise stated. Although it might be challenging to implement a completely
enclosing optical phase conjugate mirror, it is in principle possible. We make this assumption
for most of our examples, for the sake of simplicity and computational efficiency (explained
below). The time-reversed field is calculated in two ways. In the “first principles” approach,
the complex amplitude of the field radiated by the Stage 1 dipole source is determined at a ring
of equally-spaced field monitors located in the far-field region, by applying the filter diagonal-
ization method [27] to the time series of the electric field recorded at each monitor. (Note that
as evanescent waves decay very rapidly with distance from the source, placing the detectors a
distance of approximately λ–2λ from the source is sufficient to capture the far-field behavior.)
The monitors are separated by λ/2 or less, so that the propagating field is fully resolved. For
Stage 2, the monitors are replaced by harmonic dipole sources, emitting with a relative tempo-
ral phase which is the conjugate of the measured phase distribution of the initial outgoing wave.
The simulation is run until a steady state field is obtained, which represents the time-reversed
wave.

The second approach makes use of Eq. (1). The Stage 1 field generated by the dipole source
is by construction the time-dependent Green function, and so the time-reversed field can be
found directly from Eq. (1). This method is substantially faster, because only the near field
region containing the scatterers needs to be included in the Stage 1 simulation domain size,
and because Stage 2 is avoided completely. However, Eq. (1) only holds for an ideal closed
TRM [25]. While less efficient, the “first-principles” method allows study of a range of non-
ideal situations including an incomplete or imperfect TRM, or an arrangement of scatterers
which differs on the return path.

2.1. Numerical parameters

As a 2D isotropic system, our problem is separable, and for propagation in the x− y plane, we
consider both Ez (E out of plane) and Hz (E in plane) polarization. Thus the true physical system
being modeled is a cluster of dielectric cylinders with a harmonic line source. Throughout we
use dimensionless units where length is scaled by the wavelength λ . The spatial grid in the
FDTD simulations was either ∆x = 0.004 or ∆x = 0.002, sufficient to resolve the fields in the
smallest scatterers. With this resolution, the reconstructed field was found to be essentially
independent of the precise grid size. We use scatterers with refractive indices, ns = 3, 4 or 6.
(The last two values are somewhat high for the optical regime, but help to illuminate the physics
in certain cases that would otherwise show very weak scattering.) The scatterer radius varies
from as = 0.006 to as = 0.018, and the typical scatterer spacing is of order δx≈ 0.01.

3. Demonstration of macroscopic focusing behavior

Before investigating the potential for SDL focusing, we demonstrate the basic properties of
time-reversal focusing with the scatterers lying beyond the near-field region. Figure 2 illustrates
different aspects of the field behavior for two TRM configurations. The first four plots show the
radiated and reconstructed field for a Ez-polarized dipole located at r0 = (1,0) surrounded by
a complete TRM. Fifteen dielectric scatterers (black circles in Fig. 2(a)) are placed randomly
in the far-field region (r & λ ). For this case only, the FDTD grid resolution is ∆x = 0.01. The
real part of the time-reversed field Re[ETRM

z (r)] in Fig. 2(b) is an almost perfect reconstruction
of the emitted field in Fig. 2(a), with the diffraction-limited spot reconstructed at r = (1,0).
Figure 2(c) shows the imaginary part of the time-reversed field Im[ETRM

z (r)]. Inside the TRM,
the imaginary part almost exactly vanishes so that the field is purely real and of standing wave
character, consistent with Eq. (1). The standing wave arises because there is no optical sink
at the original source point, and the converging waves become diverging waves as they pass
through the source point, producing interference [28]. Outside the TRM, there are only outgoing
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Fig. 2. Illustration of diffraction-limited time-reversal focusing for Ez polarization. The
green squares indicate positions at which the field is measured and its conjugate emitted,
and are separated by λ/2. There are N = 15 scatterers with the parameters as = 0.15,
ns = 2. (a) Forward field Re[Ez(r)] radiated by a dipole source at r = (1,0). (b) Time-
reversed field Re[ETRM

z (r)] for (a) calculated by the first principles method. (c) Imaginary
part of the time-reversed field Im[ETRM

z (r)] confirming standing-wave character inside the
TRM and propagating-wave character outside. (d) Time-reversed field Re[ETRM

z (r)] for (a)
with the scatterers repositioned. (e) Forward field Re[Ez(r)] radiated by a dipole source at
r = (1,−5) with an arc-shaped TRM. (f) Time-reversed field Re[ETRM

z (r)] for (e).
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waves and so both the real and imaginary parts of the field have the same magnitude (compare
the fields outside the TRM in Figs. 2(b) and 2(c)). To illustrate the importance of the conjugate
phase information in reconstructing the focus, Fig. 2(d) shows Re[ETRM

z (r)], for a situation in
which the scatterers are rearranged before the time-reversal stage. The focus at the source point
is completely lost. Figures 2(e) (forward field) and 2(f) (time-reversed field) show that the focus
reconstruction can still be quite successful for an incomplete mirror (in this case an 80◦ arc).

4. Response to scatterers in the near-field

We now turn to the core topic of the paper—the nature of time-reversal focusing when the
scatterers are much smaller than a wavelength and are located in the near-field region of the
source. From a large set of simulations across a significant parameter space we have found
two qualitatively different regimes which we characterize as the homogenization and scattering
regimes. We examine the behavior for both Ez and Hz polarization. For efficiency, we have
used the Green function method of calculation and show the field structures only in the vicinity
of the scatterers. An ideal TRM or phase conjugate mirror may be imagined to surround the
simulation domain at a distance of a few wavelengths.

4.1. Scattering regimes for Ez polarization

In a uniform material of refractive index n, the dipole source generates cylindrical waves and
the time-reversed wave is expected to have the form Ez(r) ∝ J0(2πnr/λ ), where J0(x) is the
zeroth-order Bessel function of the first kind. Thus a reasonable definition of the spot size D of
the focus is the diameter of the zero-intensity ring,

Duni(n) = 2r1
λ

2πn
≈ 0.765λ

n
, (2)

where r1 ≈ 2.4046 is the first zero of J0(r). We now consider the spot size when the source
is embedded in a cloud of scatterers. The circular scatterers, with radius as and index contrast
∆n are arranged on a square grid with mean spacing s, but with each scatterer having a ran-
dom displacement of δr j = s(δx j,δy j) where δx j and δy j are uniform random variables in the
range [−τ/2,τ/2]. The source is placed off-center but well within the cloud. Within this pa-
rameter space we have performed hundreds of simulations. Note that in some cases, several of
the scatterers overlap. In the index generation process for our simulations, these scatterers are
simply merged into a single irregular shape of the same index. In calculating averaged refractive
indices below, we account for these merged cases.

For small, densely spaced scatterers (as . λ/100), we always find that the behavior is
largely independent of the particular random instance of scatterer locations. The field profile
of the time-reversed wave remains similar to a cylindrical wave, and the relation (2) for the
diameter Duni(n) holds very well with the index n replaced by the effective refractive index

n̄Ez =
√

f n2
s +(1− f )n2

b, where f is the fraction of the scattering region actually occupied by
scatterers. This is the standard long-wavelength homogenization of a two-component composite
for Ez polarization [29], which is appropriate for the relatively dilute and uncorrelated arrange-
ment of scatterers we are considering. Figure 3(a) shows a typical focus spot in this regime with
ns = 4,as = 0.008. Figure 3(b) shows the dependence of D on the homogenized index n̄Ez for a
range of scatterer sizes and densities, with Eq. (2) indicated by the blue line. The results for five
random instances are shown for each set of parameters, and they clearly track Eq. (2) closely.
At larger values of n̄Ez , the measured diameter D begins to depart from the homogenization
curve. In this regime, the cloud of scatterers collectively starts to act as a weak cavity and the
field in the focus region is distorted, somewhat resembling cavity modes, rather than circles. To
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accommodate this, the measured values of D are found by calculating the area A bounded by
the first zero of the focus spot (the white bands in the insets to Fig. 3) and taking D =

√
4A/π .

Overall however, the cloud of scatterers behaves as if it were a uniform medium of index n̄Ez ,
with the spot size and position depending very weakly on the precise position and size of the
scatterers. We term this the homogenization regime.
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Fig. 3. Homogenization domain of focusing for Ez polarization. (a) Focus spot region of
time-reversed field for a case with 225 scattters having parameters ns = 4,as = 0.008,s =
0.027,τ = 0.5, (corresponding to n̄Ez = 2.10). The source is at r = (0.05,0.0), indicated
by the green box. (b) Measured spot diameters (crosses) and Duni(n̄Ez) (solid) as a function
of effective index n̄Ez , for an approximate density of Ns scatterers per square wavelength.
Insets show focus spots for a case strongly in the homogenization regime (top-left) and a
case beginning to show internal structure (lower-right).

We find quite different results for somewhat larger, less dense scatterers. Figure 4(a) shows
the time-reversed field configuration for a particular random instance for the parameters: 200
scatterers with ns = 5,as = 0.014,s = 0.07,τ = 0.75, corresponding to a homogenized index of
n̄Ez = 3.33 and thus a nominal spot diameter of Duni(n) = 0.230. A blow-up of the central region
is shown in Fig. 5(a). In this case, the measured focus spot (again defined as the region bounded
by the first zero line (white) around the source point) has an effective diameter D = 0.256.
This is actually slightly larger than Duni, but is of course well below the vacuum spot size
of 0.765. However, for this instance, the focus spot only samples approximately 19 scatterers.
Calculating the homogenized index just within the spot gives local values n̄loc

Ez
= 2.64 and Dloc

uni =
0.290, so that the actual spot size D is around 12% smaller than might be expected. This is
certainly not a dramatic improvement in focusing beyond the homogenization level but shows
that improvements are possible. Note that as expected, the fine structure in this plot is entirely
in the scattering region—the waves reaching the nominal time reversal mirror in Fig. 4(a) have
only low resolution features. A different random instance with the same parameters shown in
Figs. 4(b) and 5(b) performs somewhat better, with a measured spot size D = 0.217 which is
less than the nominal homogenized diameter Duni.

Whereas the behavior in the homogenization regime is essentially independent of the precise
location of scatterers and source, the focusing effects in this regime are much more sensitive
to the distribution of scatterers and the location of the source. While the cases in Figure 5(a,b)
show good focusing, for certain random instances such as in Figs. 5(c) and 5(d) (again with the
same parameters) no strong focus spot is obtained, and for Fig. 5(d), the focusing is consider-
ably worse than in the homogenization regime. From the many random instances we have ex-
amined, this behavior with no sharp focus is in fact the more common result. The time-reversed
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Fig. 4. Scattering domain of focusing for Ez polarization with source at rs = (0.05,0) (green
square). (a) Example with 200 scatterers of ns = 6,as = 0.014,s = 0.0426,τ = 0.75. (b)
Different random arrangement with same parameters as (a).
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Fig. 5. Close up of scattering region of focusing for Ez polarization. (a) Magnification of
central region of Fig. 4(a). (b) Central region for Fig. 4(b). (c) and (d) Central region for
two other cases with same parameters but poor hot-spot behavior.
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Fig. 6. (a) Re[Hz] component of time-reversed field for Hz polarization, for parameters of
Fig. 3(a). (Note change in scale of x and y axes.) (b) Effective indices n̄Ez and ñHz as a
function of fill fraction f and scatterer index ns.

field thus displays a “hot-spot” behavior, where the source and scatterers must be fortuitously
arranged to attain good focusing. It is interesting that a similar sensitivity to antenna location
was observed in the microwave experiments by Lerosey et al (see online material for Ref. [14]).
The strong sub-wavelength focusing they observed was only obtained after careful adjustment
of the source and surrounding wires, though the degree of optimized focusing obtained was
much stronger, due to very strong scattering by metal wires.

4.2. Scattering regimes for Hz polarization

We repeated these calculations for a source with Hz polarization. In this case, the Green func-
tion becomes a 2×2 Green tensor Gi j(r,r′) and the time reversal mirror is implemented with
detectors and dipole sources for both components of the in-plane electric field. In general, we
find the focusing properties are much weaker for Hz polarization. Figure 6(a) shows Hz focus-
ing in the homogenization regime for a configuration with the same scattering parameters as
in Fig. 3(a), but a somewhat larger cloud (in order to contain the focus spot). We see Hz case
produces a considerably larger focus spot, with here D = 0.56, as compared to D = 0.37 for the
Ez case. Similarly, for parameters which exhibit hot spot behavior in the Ez case, we see rela-
tively poor focusing for Hz polarization with no sub-diffraction limited behavior. This contrast
in behavior with polarization increases with the index contrast.

We can interpret the weaker focusing for Hz polarization in two ways. The appropriate def-
inition of the homogenized index is not as well defined in the Hz case, as it depends on the
local orientation of the electric field at scattering interfaces [29]. Assuming fully perpendicular
fields, we can find ñHz = 1/

√
f/εs +(1− f )/εb, yielding a mean value considerably lower than

n̄Ez . Indeed, ñHz has an upper bound
√

εb/(1− f ) (see comparison of n̄Ez and ñHz in Fig. 6(b)).
For arbitrary polarization, the correct homogenized value will lie between ñHz and n̄Ez , but will
certainly be lower than n̄Ez . The difference in the two effective indices explains the observation
that the difference in focusing behavior between the polarizations increases with index contrast.
For another interpretation that also applies in the scattering regime, we can consider the scat-
tering cross section σ (equal to the extinction coefficient in the case of lossless materials) of a
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single cylinder [30]. In the limit of small cylinder diameter, the ratio of the cross sections is

Rσ = σEz/σHz = (n2 +1)2/2, (3)

which gives Rσ = 50, for a scatterer index as low as n = 3. The much poorer hot-spot behavior
for Hz polarization is thus easy to understand. In the Lerosey experiment, the dipole antenna
is aligned with long wire scatterers, so that the field can be regarded as predominantly Ez in
nature and the appearance of strong hot-spot scattering is understandable.

5. Other effects

5.1. Sensitivity to randomness

Since to achieve SDL focusing by time reversal, one reconstructs the near field entirely from
far-field information, we might expect considerable sensitivity to imperfections in the phase
conjugate/time-reversal mirror. We modeled this by adding phase noise to the antennae. Each
dipole source now radiates with the amplitude A j = A0

je
iη j where A0

j is the dipole amplitude
for a perfect mirror and η j is a uniform random variable in the range [−ηm/2,ηm/2]. With an
imperfect mirror, Eq. (1) is no longer applicable, so we calculate TR fields by the direct method.
As the time-reversed field is no longer purely real, we plot the modulus |Ez|. For the scatterer
configuration of Fig. 4, Figs. 7 (a)-(d) show the reconstructed field for ηm = 0,0.75π,1.5π
and 2π (complete randomization of the incoming phase). Surprisingly perhaps, for ηm = 0.75π
the focused field is hardly degraded at all, and even at ηm = 1.5π the original focus spot is
still visible. For complete randomization, the original spot does disappear as expected. Similar
robustness to phase errors has been observed in recent experiments on phase conjugate imaging
through turbid media [24].

We have also investigated the sensitivity to changes in scatterer location on the return path.
Such changes might be associated with imaging of living specimens, or systems using holo-
graphic recording where the field reconstruction is performed later or on a different but nom-
inally identical structure. Again starting with the example from Fig. 4a, we shift the location
of each scatterer by a random offset ∆r j = (ρx

j ,ρ
y
j ), where ρx,ρy are uniform random vari-

ables in the range s[−ρm,ρm], with s the mean scatterer spacing. Figures 7(e) and (f) show the
reconstructed field for ρm = 0.25 and ρm = 1. The original focus spot partially survives with
ρm = 0.25 but is lost for ρm = 1. However, a new hot spot, even smaller than the original one,
has appeared to the lower-right of the original source point. This illustrates that accurate time-
reversal is not required in order for hot spots to appear in the final field—they are as much a
product of quasi-resonances associated with fluctuations in the scatterer density. However, ac-
curate time-reversal is needed to ensure that a hot spot associated with the original radiating
source can be recovered with the incoming field. It should be obvious that in the homogenized
regime represented by Fig. 3a, random rearrangement of the scatterers has essentially no effect
on the focusing behavior, as is confirmed by simulations.

5.2. Ideal metallic scatterers

With the current widespread interest in near-field enhancement by nano-metallic structures, it is
natural to examine the behavior of time-reversal focusing with metal scatterers. We performed a
number of simulations with similar parameters to those above but using nominally perfect metal
scatterers of ε =−1+10−10i. (Note that in the visible, metals exhibit strong dissipation so our
calculations do not apply there, but the introduction of loss destroys time-reversal symmetry
and strong focusing would be impossible anyhow. The results should however be relevant in
the mid-infrared). Surprisingly perhaps, for the 2D geometry considered in this paper, the time-
reversed focusing fails completely for interesting reasons.
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Fig. 7. Stage 2 focused field |Ez| for the scatterer configuration in Fig. 4(a) with phase noise
(a) ηm = 0, (b) ηm = 0.75π (c) ηm = 1.5π (d) ηm = 2.0π; and position noise (e) ρm = a/8,
(f) ρm = a. The green square indicates the location of the original source.
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Figure 8(a) shows a snapshot of the electric field produced by an antenna in a representative
cluster of metal scatterers. The perfect metal scatterers expel the field and lead to a pattern that
is strongly localized with D≈ 0.06. However, the time-reversed field predicted by Eq. (1) and
illustrated in Fig. 8(b) is completely different and shows that the incoming field from the TRM
is almost completely expelled with virtually no energy reaching the interior of the scattering
region. This behavior is explained as follows. Recall that for a classical dipole in a closed
metallic cavity at a frequency below any resonant cavity modes, on average no energy is coupled
into radiation. Instead energy oscillates between the cavity field and the dipole at the driving
frequency. For small clusters of metallic scatterers, we invariably find that the scattering is
sufficiently strong that the source dipole is effectively contained in an almost perfect cavity,
and there is continual exchange of energy between the dipole and a local standing mode field. It
is this standing mode that is visible in Fig. 8(a). Only a small fraction of the energy in a single
optical cycle escapes beyond the scattering region (for this example, approximately 0.0005 of
the peak standing wave energy in each cycle), so that the near field region and the region beyond
the scatterers are almost completely decoupled. By the same argument, the incoming field from
the TRM couples very weakly to the interior and no significant energy is found inside the
scattering region, let alone a strong focus spot. These observations are consistent with Eq. (1).
Due to the decoupling from the exterior region, the real part of the Green function near the
antennas is three orders of magnitude stronger than the imaginary part in the example shown.
Thus the refocused field predicted by Eq. (1) is extremely weak. In fact in the scattering region,
Im[G(r,r0)] will contain features below the diffraction limit, and since the regions are not
perfectly decoupled in principle it would in principle be possible to excite local field structures
near the original source from the incoming reversed wave. However, as the vast majority of the
incoming energy would be reflected by the scatterers this would require enormous gain on the
TRM and is quite impractical.

We note that in a 3D geometry, it is easy for the light to escape at glancing incidences and
refocusing should be much more feasible.
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Fig. 8. (a) Snapshot of standing mode pattern radiated by antenna in a cluster of metal
particles. (b) Stage 2 reconstructed field.

6. Conclusion

We have modeled the problem of sub-diffraction limited focusing by small dielectric and metal-
lic scatterers in the optical domain for 2D geometries. Focusing well below the free-space
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diffraction limit is indeed possible in the scattering regime, but as the focusing is not greatly
stronger than in the equivalent homogenized regime, it is not clear that there is a significant
advantage to this approach. However, since in the scattering regime the spot size is determined
by a few local scatterers, it may be that with careful design work hot-spot engineering could
allow for SDL focusing with a smaller number of scatterers than would be required in the
homogenized regime.
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