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Abstract The interplay between grain crushing and segregation controls the dynamics of dense
granular flows that underpin many natural hazards. We address this issue for the first time by developing a
simple lattice model with three interacting rules—for grain crushing, mixing, and segregation. In earthquake
faults, particles are trapped, they crush and mix, but do not segregate. In this case the model produces
power law distributions, consistent with previous models. When segregation by kinetic sieving is added to
the model, we predict depth-dependent lognormal distributions as previously observed, but not explained,
in pyroclastic flows, debris flows, rock avalanches, and dry snow avalanches.

1. Introduction

When dealing with granular materials—a conglomerated system of many distinct solid particles—it is useful
to classify their behavior in terms of the sizes of the grains in the system. Good examples of granular mate-
rials include sand, snow pellets, and coffee. In each case, their properties depend on their size. For example,
according to Weibull [1951], the resistance of individual particles to crushing is statistically higher for smaller
particles, while Bagnold [1954] showed through experiments that the shear strength of flowing granular
materials increases quadratically with grain diameter for monodisperse systems—where particles are of
similar size.

Natural granular materials such as sand and snow pellets are inevitably polydisperse (not monodisperse).
Where they advect, for example, during geophysical flows, we need to account for variations of the grain-
size distribution. We have used the term “grainsize” instead of “grain size” to highlight its possible role as an
internal coordinate in continuum mechanics [Marks et al., 2012]. The problem addressed here is the inter-
action between grainsizes as they crush, mix, and segregate. These processes are common to geophysical
flows of granular materials, including earthquake fault gouges, rock avalanches, pyroclastic flows, debris
flows, and snow avalanches—all of which go through indefinite shear deformation. In each case, one can
ask the question: Which properties of the flow control the evolution of the grainsize distribution?

Figure 1 contains grainsize distributions collated from many studies of field data. In the case of earthquake
faults, when one samples directly from the fault core, power law grainsize distributions are often recovered,
independent of fault kinematics (see Figure 1a) [Marone and Scholz, 1989; An and Sammis, 1994; Chester
et al., 2005; Billi, 2005, 2007]. When such results are sorted by increasing deformation, we see a correspond-
ing increase in the measured slope of the power law distribution (see Figure 1b, where gouge concentration
is used as a proxy for deformation [Marone and Scholz, 1989; Billi, 2005]). Conversely, for snow avalanches,
pyroclastic flows, debris flows, and rock avalanches, either unimodal or bimodal lognormal grainsize dis-
tributions can be observed (a lognormal distribution appears as bell-shaped on semi-logarithmic axes,
see Figures 1c–1f ) [Bartelt and McArdell, 2009; Wilson, 1985; Esposito et al., 2013; Phillips and Davies, 1991;
Schmincke, 1967; Dunning, 2006; Pollet and Schneider, 2004]. In each of these latter cases, a granular material
flows down a slope, while crushing, mixing, and segregating. Even though there are large differences in the
rheology of each flow, qualitatively similar grainsize distributions are produced. We propose the first mech-
anism to reproduce this behavior using a new lattice model with only three simple rules. Each of these rules
alone will yield previously known results, but when combined, new complex phenomena emerge.
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Figure 1. Typical grainsize distributions collected from published field data. (a) Grainsize distributions from six loose Mesozoic carbonate earthquake fault gouges
in central Italy [Billi, 2007]; reverse faults (red), extensional faults (black), a strike-slip fault (solid blue) and a transpressive fault (dashed blue). (b) Fault gouge evo-
lution from the Mattinata Fault [Billi, 2005]. Each point indicates a different location along the fault. The slope of the best fit power law for the gouge material
is plotted against the percentage of the fault occupied by gouge material—the remaining amount being breccia. This is interpreted as a proxy for deformation.
(c) Grainsize distributions from four snow avalanches [Bartelt and McArdell, 2009]. Two dry powder avalanches in Vallée de la Sionne (red) and two wet snow
avalanches, one in Grünbödeli (black) and one in Gatschiefer (blue). (d) Grainsize distributions from pyroclastic flows. Mount Taupo, NZ, sampled 25 km from the
vent [Wilson, 1985], at the top of each of two distinct layers composed mostly of pumice and lithics (red) and Guiliano, Italy [Esposito et al., 2013], composed of
Pozzolan (blue). (e) Grainsize distributions from debris flows. Samples from two flows at the Tarndale Slip, NZ, generated from clay-rich stony regoliths (red)
and two from Bullock Creek, NZ, generated from highly sheared sandstone and argillite (blue) [Phillips and Davies, 1991], and a lahar (black) in the Ellensburg
Formation, USA [Schmincke, 1967], sampled at top (solid), central (dashed), and basal (dotted) depths. (f ) Grainsize distributions from rock avalanches. Two
samples taken from an avalanche in Falling Mountain, NZ, composed of argillite and grewyacke [Dunning, 2006] at 3 km from the source of the avalanche (red),
and one sample from the Holocene Flims sturzstrom [Pollet and Schneider, 2004], composed of calcareous breccia deposits (blue).

2. Results

The stochastic lattice model defined here is composed of a regular 2-D grid, portrayed in Figure 2, where
each cell is located at a position {i, j}. The i index denotes a microscale internal coordinate, which not only
discretizes the grainsize distribution but also preserves information on local neighbors. In the jth row, the
ith cell contains an ni,j number of grains of identical grainsize si,j . All cells have the same solid fraction and
volume; therefore, the number of grains scales as ni,j ∝ s−3

i,j . The j direction represents an external coordi-
nate, such that each row i describes the grainsize distribution of the representative volume element situated
in the physical location j. In the i direction, we use many cells, such that upon averaging, this system could
describe smooth grainsize distributions. Additionally, the system is periodic in the i direction and has a
thickness W = 1 in the j direction, such that each cell has a physical thickness of ΔW .

We will now present the three rules which will facilitate crushing, mixing, and segregation. For the case of
crushing, information is required at the microscale, such that the rule operates in the i direction alone. In the
cases of mixing and segregation, the converse is true, and the mechanisms account for advection in phys-
ical space, such that the rules move particles in the j direction. Finally, to explore the interactions between
crushing, mixing, and segregation, the rules will act simultaneously in their corresponding direction.
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Figure 2. Schematic representation of the stochastic lattice model. On the right is the physical system we wish to
represent—a polydisperse sample of granular material discretized in a single physical direction j into N representa-
tive volume elements. On the left is the equivalent stochastic lattice model, with coordinate i mapping the grainsize
distribution discretely into M cells, and j representing the physical direction with N cells.

2.1. Comminution
The first rule describes comminution (the process of grain crushing), which is the predominant factor affect-
ing grainsizes during isotropic compression of brittle granular media [Einav, 2007] (Figures 3a and 3d). The
comminution rule is set to capture two essential, counteracting mechanisms, correspondingly known as
the size [Weibull, 1951] and cushioning [Ben-Nun et al., 2010; Tsoungui et al., 1999] effects. They are (1) that
smaller grains should be more resilient since they have fewer internal defects (i.e., grains with small si,j tend
to survive) and (2) that grains surrounded by neighbors of similar size are more vulnerable as they tend to
carry more internal shear (i.e., grains with small “local polydisperity” |si,j − s̄i,j| are more likely to crush).

Our rule of comminution is then:

if |si,j − s̄i,j| ≤ 𝛽si,j ∶ si,j(t + Δt) = Xsi,j(t) (1)

where s̄i,j = (si−1,j + si+1,j)∕2 is the local average size and 𝛽 is a nondimensional coefficient controlling the
“local fragility” 𝛽si,j . If the inequality condition is met at time t then the grainsize si,j reduces over a time
increment Δt by the factor X with a rate of breakage rB, where X is an independent and identically dis-
tributed (i.i.d.) random variable drawn uniformly from real numbers in the interval (0, 1). We set Δt such that
its product with any rate will be less than unity (here this is applied for rB, but similarly for other rates, or the
most stringent combination thereof ).

Figure 3. Systems with evolving grainsize distributions. (a–c) The lattice model mechanisms. (d–f ) The physical processes
described here.
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To test the confined comminution problem (see Figure 3d), at time t = 0 we allocate each cell a size si,j along
M = 106 cells, but with just one cell in the j direction (N = 1), and test how the grainsize distribution evolves
over time. We run the simulations until we find a steady state grainsize distribution, which occurs when
most of the local polydisperity factors become bigger than the local fragility. Results in Figure 2a show the
final grainsize distribution for different 𝛽 (the only model parameter), plotted in terms of the number of par-
ticles N(Δ > s) with grainsize Δ larger than a certain size s over a log-log curve, which shows a linear trend.
Therefore, the slope of this graph is the power law coefficient 𝛼 of the grainsize distribution: N(Δ ≥ s) ∝ s−𝛼 .
We found that 𝛼 is practically insensitive to the size of the interrogation window throughout which the dis-
tribution is measured (up to 102 times fewer cells than the overall lattice size). The system is insensitive to
the number cells, M, but as with most numerical methods gives smoother results with higher resolution.
Therefore, 𝛼 represents the fractal dimension, which over a wide range of 𝛽 is around 𝛼 = 2. The inset of
Figure 2a shows how the cumulative grainsize distribution by mass, F = F(s), evolves toward an ultimate
distribution F = s3−𝛼 . Power law grainsize distributions with a fractal origin are often evident in earthquake
fault gouges (see Figure 1a) [Marone and Scholz, 1989; An and Sammis, 1994; Chester et al., 2005; Steacy and
Sammis, 1991; Billi, 2005, 2007], and their role as an attractor has been highlighted [Ben-Nun et al., 2010;
Einav, 2007]. Nevertheless, here the fractal dimension of 𝛼 = 2 is lower than that found in previous investi-
gations where 2.2 < 𝛼 < 3.2, but is much closer to comminution observed at lower strain in lab experiments
[Coop et al., 2004]. It will be shown later that larger values of 𝛼 can be produced by combining comminution
with mixing.

2.2. Mixing
The second rule describes mixing, which is inevitable in densely sheared granular media where small
and large grains often swap places (Figure 3b). This is evidenced by large velocity fluctuations that form
vortex-like structures [Radjai and Roux, 2002; Rognon and Einav, 2010; Miller et al., 2013]. To account for these
chaos-like motions, the mixing is activated only along the physical coordinate direction; the internal coor-
dinate is here introduced solely to provide sufficient realizations for a smooth grainsize distribution at any
point in space. Here granular mixing takes a symmetric random walk motion in 1-D, where the probabilities
of moving to immediate neighbors are the same and develops irrespective of grainsize.

Our rule of mixing is then:

si,j ⇔ si,j+Y (2)

where Y is a discrete i.i.d. random variable drawn from the two integer values {−1, 1} and ⇔ represents
the swapping of values in respective cells. The mixing rate is set to allow random swapping of grains either
up or down with diffusion rate rD = D∕(2ΔW2), where ΔW2 is the mean square displacements over which
the motion fluctuates [Campbell, 1997; Griffani et al., 2013] and D is the granular diffusivity (m2/s). This is
known to scale as D ∝ |�̇�| for both collisional [Savage and Dai, 1993] and dense [Utter and Behringer, 2004]
flows, where �̇� is the local shear strain rate (s−1). Here this rate and therefore D are set to be uniform across
the shear layer for simplicity. Figure 4b shows spatiotemporal contours of the local average grainsize of an
initially segregated lattice system that mixes over time; the contours have an error of ±1% of the analytical
solution of the conventional Fick’s diffusion equation shown by superposed lines as

𝜕𝜙

𝜕t
= 𝜕

𝜕z

(
D
𝜕𝜙

𝜕z

)
. (3)

where 𝜙(z, s, t) is a probability density function of the grainsizes s, at time t, in a particular physical location
z. In other words, using the lattice model with the mixing rule only may be seen as an (inefficient) method
to numerically solve the diffusion equation above. However, the advantage of this model is that it can be
combined easily with the first and third rules.

2.3. Segregation
The third rule describes segregation (Figure 3c). Unlike fault gouges, granular avalanches occur at low con-
fining pressure and are free to expand while flowing. They can therefore experience large gravity-driven
grainsize segregation [Savage and Lun, 1988; Gray and Thornton, 2005; Rognon et al., 2007; McElwaine and
Nishimura, 2000; Naylor, 1980; Marks et al., 2012]. Many cellular automata have been proposed to describe
segregation in granular systems [Makse et al., 1997; Marks and Einav, 2011]; however, most use the discrete
nature of the cellular automaton to describe the geometry of individual particles and are difficult to homog-
enize at large scales. We circumvent this issue by using the regular 2-D lattice system described previously.
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Figure 4. Results from the three lattice model rules tested in isolation. (a) Steady state grainsize distributions using the
comminution rule. All simulations begin with a randomly generated initial grainsize distribution with power law dimen-
sion 𝛼 = −2 and have M = 106 by N = 1 cells and rB = 1. 𝛽 is varied as 𝛽 = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Inset
indicates evolution of the grainsize distribution for 𝛽 = 0.2 for t = 0, 0.05, 1, 2, and 5 (solid, dotted, dash-dotted, and
dashed lines, respectively). (b) Average grainsize contours using the mixing rule where D = 0.05. The system is initially
fully segregated and is composed of a uniform distribution of particles by size between s = 0.5 and 1. Superposed lines
indicate numerical solution of the corresponding diffusion equation by a finite difference scheme. (c) Average grainsize
contours using the segregation rule where kS = 1. The system is initially mixed, with the same distribution of particles
as the final state of Figure 4b. Superposed lines indicate numerical solution of the corresponding advection equation
presented in [Marks et al., 2012] by the numerical method described therein.

Our new segregation rule for polydisperse media generalizes a previous model for bidisperse media [Marks
and Einav, 2011], which successfully reproduced the continuum mechanics results in [Gray and Thornton,
2005]. Unlike the mixing rule, here the swapping of grains is made preferentially: particles smaller or larger
than both their local average (s̄j averaged along the whole i coordinate) and their swapping partner go
down or up, respectively.

Our rule of segregation is then:

if (si,j < s̄j) ∧ (si,j < si,j−1) ∶ si,j ⇔ si,j−1

if (si,j > s̄j) ∧ (si,j > si,j+1) ∶ si,j ⇔ si,j+1 (4)

where the statement A ∧ B is true if A and B are both true; else it is false. Motivated by our previous contin-
uum mixture theory of segregation in polydisperse granular media [Marks et al., 2012] the segregation rate
is set to depend on grainsize as rS = ks|�̇�(si,j − s̄j)|∕(ΔWs̄j), with ks being a constant (m) and �̇� is set to be uni-
form across the shear layer for simplicity. We iterate in two half time steps, alternately applying this rule first
to odd rows, and then even rows, such that particles can move at most two cells in a single time step. With-
out the half stepping, a single particle could migrate unphysically far, due to it swapping location multiple
times. Figure 2c shows spatiotemporal contours of the local average grainsize of an initially uniform sys-
tem normal to the flow direction, which segregates over time; the contours resulting from the lattice model
have a typical error of ±1% from the direct numerical solution of the advection equation of the equivalent
continuum theory shown by superposed lines as

𝜕𝜙

𝜕t
= ks

𝜕

𝜕z

(
𝜙|�̇�|(s − s̄)

s̄

)
(5)

As we demonstrated for the case of the mixing rule, using the lattice model with the segregation rule only is
shown to represent a good numerical solution to the (nontrivial) advection equation above.

Next, we address the earthquake fault problem. In Figure 4a we showed a power law grainsize distribution
with fractal dimension 𝛼 = 2 using the comminution rule. A similar comminution rule was proposed before
for a 3-D cellular automaton by Steacy and Sammis [1991], who found 2 < 𝛼 < 2.8 that is closer to the
measured range from natural (cataclastic) fault gouge materials of 2.2 < 𝛼 < 3.2 [Marone and Scholz, 1989;
Chester et al., 2005; Billi, 2005, 2007]. However, in plane shear confined by walls, mixing of grains inevitably
develops, and in our view this phenomenon cannot be neglected from the grainsize dynamics (portrayed
in Figure 3e), as it continuously changes packing geometries. To address this point we integrate the rules
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Figure 5. Coupled comminution and mixing rules, applica-
ble for earthquake fault gouges. Varying values of rD∕rB =
D∕(2kbΔW2). For all cases, the system has M = 1000 by
N = 101 cells and 𝛽 = 0.2. Plot shows final value of best fit to
power law part of cumulative grainsize distribution at t = 1,
5, 10 and 100, corresponding to the dashed, dash-dotted,
dotted, and solid lines, respectively.

of comminution and mixing to work along the
internal and physical shear plane directions of
the 2-D lattice, respectively. We set rB = kB|�̇�|
for the fault problem, with kB being a nondimen-
sional constant, and �̇� the shear strain rate across
the fault gouge layer. Figure 5 shows how the
fractal dimension 𝛼 can always progress toward
3, at a rate controlled by the dimensionless ratio
R= rD∕rB. At R ≪ 1 (low diffusion rate relative
to the breakage rate), the system quickly reaches
𝛼 → 2, as significant mixing has not yet occurred.
Beyond R> 1, the fractal dimension becomes
insensitive to increasing R but depends on the
shear time and approaches 𝛼 = 3. At intermediate
Rs, we observe a transition in the fractal dimension
from 2 to 3 over time, which may explain observa-
tions of 2.2 < 𝛼 < 3.2 in natural faults. Compare
these predictions with the field measurements

shown in Figure 1b, where increasing deformation correlates strongly with increasing values of 𝛼. Values
of 𝛼 > 3 imply that a minimum particle size is present, below which the power law is no longer a good fit
[Billi, 2007]. For simplicity, we have not included such a criteria in our model. In earthquake faults, the most
comminuted particles lie closer to the fault surface [Billi, 2010]; this shows variation of grainsize in space but
is due to shear localization and not the preferential sorting of grains.

Unlike in earthquake faults, segregation in the avalanche problem cannot be ignored as there is preferential
sorting of grains between shear layers (Figure 3f ). For this purpose we integrate all three model rules into
the lattice system simultaneously. Figure 6 shows the spatiotemporal contours of the local average grain-
size and steady state grainsize distributions at three different depths along the shear plane. For large ratios
of the segregation and breakage rates (large kS∕kB) we generally find depth-dependent lognormal distribu-
tions, even in the absence of mixing (when the comminution is accompanied by segregation only). Evidence
of bimodality is seen at the shallower layers, which vanishes at deeper layers, where the distribution is
purely lognormal. These results make qualitative agreement with the grainsize distributions presented in
Figures 1c–1f. Quantitative agreement, however, is hard to achieve, as we expect the lognormal distributions
to vary in both position and time.

By adopting different combinations of three lattice model rules (crushing, mixing, and segregation) we have
been able to reveal a variety of grainsize distributions. The exact form of each distribution was clearly shown

Figure 6. Coupled comminution, mixing and segregation
rules, applicable for avalanches and flows. For all cases rB =
1, initial grainsize distribution has 𝛼 = −2 and 𝛽 = 0.2.
The system has M = 10000 by N = 51 cells. (a) kS = 0.01,
rD = 0. (b) kS = 1, rD = 0, and (c) kS = 1, rD = 10. (left)
Average grainsize contours in space and time. (right) Steady
state grainsize distributions with superposed lognormal fits;
corresponding to three different depths, denoted by circles
on the left contours.

to depend on the rates of crushing, mixing and
segregation. We described how despite experi-
encing huge shear deformations, comminution,
and mixing, the grainsize distributions of gravity
currents may tend to lognormal distributions due
to the presence of segregation. This is contrasted
with earthquake faults, where a lack of significant
segregation causes the grainsize distribution to
evolve toward a fractal scaling.

3. Discussion

We have expressed segregation and mixing by
laws described at the scale of statistically repre-
sentative volume elements. Therefore, segregation
and mixing can be described using continuum
models. On the other hand, the comminution
model could not simply be coarse grained (or
upscaled/homogenized) into a continuum model,
since it is governed by finer-scale mechanisms that
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depend on the relative positions of individual grains, below the resolution of the representative volume ele-
ments. As such, our model provides new means to couple and study the interplay between distinguishable
scales: here the representative volume element and the local grain scales. This model can be used to explore
the same mechanisms in multiple spatial dimensions if a general velocity field is known.

The field data presented in Figure 1 has been shown to qualitatively match the predictions of the stochastic
lattice model presented here. In fault gouges, a connection has been established between the evolution of
the gouge material (as it is crushed and mixed) and the value of the fractal dimension of the grainsize dis-
tribution. For gravity currents such as snow avalanches, pyroclastic flows, debris flows, and rock avalanches,
segregation has been shown to facilitate the production of lognormal grainsize distributions, coupled
together with comminution (with or without mixing).

There may well be other factors contributing to the emergence of such lognormal grainsize distributions,
but they would not exclude the current mechanism. For example, in wet snow avalanches, granules tend to
be larger than in dry snow avalanches due to agglomeration via cohesion, but in both cases the grainsize
distributions follow a lognormal shape [Bartelt and McArdell, 2009]. Other factors include grainsize reduction
due to erosion and the effect of the nonuniformity of the velocity distribution along cross sections of the
flow. This might have a critical effect on the formation of frontal segregated levee deposits [Johnson et al.,
2012] and during heap flows [Fan et al., 2014] but will not change the qualitative nature of our conclusions.
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