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Summary

Segregation, whether by income, age or language (Schelling, 1969; Traulsen and Claussen, 2004) is

ubiquitous in our everyday lives. This is not merely a human trait. Any time grains are rolled down a

slope (Savage and Lun, 1988; Gray and Thornton, 2005), whirled in a rotating drum (Nityanand et al.,

1986; Khakhar et al., 1997; Khakhar et al., 1999a) or shaken in a box (Knight et al., 1993; Rosato et al.,

2002), we observe those grains organising into complex patterns. The dominant mode of segregation

in granular avalanches is kinetic sieving, where separation occurs according to size (Savage and Lun,

1988; Gray and Thornton, 2005).

When looking at mechanical phenomena in general, one can begin with conservation of mass, mo-

mentum and energy. Using this tactic, many theories have been developed to help our understanding of

granular avalanches, particularly those involving kinetic sieving mechanisms (Savage and Lun, 1988;

Gray and Thornton, 2005). These theories are comprehensive frameworks for describing the process in

mechanical terms, and give results which reflect experiment (Savage and Lun, 1988; Savage, 1987; Sav-

age and Vallance, 2000; Bridgwater and Ingram, 1971). Our work here describes a different approach,

where one ignores the mechanics of the interactions, and focuses only on the outcome of the process.

We construct a modified shear ring apparatus to simulate a granular avalanche, and use our ob-

servations of the flow to develop a simple rule which describes the segregation. We use this rule to

construct a cellular automaton which crudely approximates the flow behaviour. By taking conservation

of mass about this system, we define an analogous continuum theory in terms of a governing advective

differential equation.

We go on to show that the two species in the flow segregate at different speeds, and quantify these

relative speeds. This phenomenon has not previously been captured analytically.
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CHAPTER 1

Introduction

Granular materials exist all around us. We play with them growing up in sandboxes, we eat them in the

morning as cereal and we build our houses on them. But still we know very little about them.

Consider sand on a beach. You can walk on it and it will support your weight; you can let it run through

your fingers like the water in the surf, but you can not stand on the water.

Research into granular mixtures is driven largely by manufacturing. Most finished products and foods

pass at some point through a granular stage — pellets of plastic, gravel in concrete, corn in a silo or

powders in a pill.

“Seemingly modest changes in conditions, such as temperature, humidity, and surface conditions rou-

tinely cause earth bound devices to fail”, concluded the 2005 NASA technical report (Wilkinson et al.,

2005) on the importance of understanding granularity to exploring Mars and the Moon.

The report criticises industry, which in the absence of adequate granular theory relies on “millennia-

long trial-and-error practices that lead to today’s massive over-design, high failure rate, and extensive

incremental scaling up of industrial processes because of the inadequate predictive tools for design.”

1.1 Statics

Granular materials are made of small particulate matter which collectively behave as something between

a solid and a liquid. Statically, the force propagation between a mixture of particles is still not well

understood (Duran and Jullien, 1998; Trujillo et al., 2003).

Before one can try to analyse the dynamics of a flowing situation such as inclined chute flow, one

must ascertain how forces are distributed in a steady state. To do this, in Part 1 we looked at the force

1



1.2 DYNAMICS 2

propagation in a bi-disperse medium of equal sized spheres with differing elastic modulii. In Part 2 these

ideas are extended into a dynamic regime.

1.2 Dynamics

Many different types of dynamic interaction can occur in a granular system. These include mixing, flow,

vibration and fluidisation.

Mixing is one of the most important granular processes for industrial purposes. It is usually hard to mix

a variety of grains uniformly (Khakhar et al., 1999a). For example, suppose you try to mix granular

material homogeneously using a rotating disk whose axis is horizontal. One may think that it is easy if

one could continue rotation forever. Unfortunately, this is not the case even for two very similar types

of grains. In fact mixing different kinds of granular matter, such as different sizes or densities, is even

more difficult.

Granular matter can flow like a fluid in some cases, but does so in a remarkably different fashion from

a liquid. It flows intermittently and can even get jammed, as experienced by anyone using a cheap

hourglass.

Vibrating beds are becoming an attractive topic for study (Huerta and Ruiz-Suarez, 2004). Surface waves

can be created in a bed of granular material, just as in a body of water (Drahun and Bridgwater, 1983).

These waves are notably non-linear and behave quite differently from the analogous fluid. Under strong

vibration, the bed can become fluidized and this can result in convection.

If air flows upwards into a granular bed from the bottom, the grains can act as a liquid. This kind of

fluidised bed behaves very similarly to a real fluid; it even boils if enough air is pumped upwards through

the system (Hoomans et al., 2000). It is believed (but not yet confirmed) that a person could swim in

such a bed.



CHAPTER 2

Literature Review

Granular materials segregate for many reasons and under many conditions. Small differences in size or

density can cause the particles to segregate when flowing. While generally granular materials can be

described as a continuum, and hence as fluids, there is no analogous segregative term in fluid flow.

In terms of mixing, granular materials exhibit much more complicated and varied behaviour than that of

fluids (Donald and Roseman, 1962; Cleary et al., 1998), and are being actively researched. For a real

fluid mixture, such as salad dressing - a combination of vinegar and oil, the Navier—Stokes equations are

obeyed, and so can be modelled accordingly. However for a granular flow, no such governing equation

exists. Many systems have been observed which exhibit this complicated mixing, and understanding the

nature of these flows is necessary for a comprehensive model of granular mixtures.

These systems come in a wide variety of forms. They can be either circular (Ottino and Khakhar, 2000)

or non-circular (Khakhar et al., 1999b), avalanching (Gray and Hutter, 1997; Koeppe et al., 1998) or

continuous (Makse, 1999). Such systems may differ by density (Jain et al., 2005) or size (Brone and

Muzzio, 1997). In terms of how the particles interact, they may be segregating (Metcalfe and Shattuck,

1996) or non-segregating (Clement et al., 1995).

For such flows, there could be convection currents (Khosropour et al., 1982) or even patterns (Aranson

and Tsimring, 2005) forming as a result of complex flow behaviour. In this paper, we concern ourselves

specifically with the pattern formation due to flow down an inclined plane (Savage and Lun, 1988;

Gray and Thornton, 2005; Dolgunin et al., 1998). This phenomenon has previously been studied in

detail analytically, experimentally and numerically. While it is believed that the phenomenon is well

understood, there are many questions with regard to the validity of the previous numerical and analytic

work. This paper proceeds to take a vastly different approach to that previously considered in both the

analytic and numerical work, and thus forms a new theoretical model for the phenomenon.

3
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2.1 Mixing flows

A good example of a mixing flow is that occuring inside a rotating cylinder. Imagine a front loading

clothes dryer full of sand. This type of flow is well defined and understood, and was investigated at

length by Henein et al (Henein et al., 1983). These systems are used in engineering to both separate and

mix granular systems. The bed of a concrete delivery truck rotates to ensure uniform mixing, while at a

slightly faster rotation speed it would separate the particles by density, as in a centrifuge.

FIGURE 2.1: Mixing regimes in a rotating cylinder. Top left: Avalanching regime.
Dashed line indicates slope after avalanche forms. Avalanches occur one after another,
as the slope increases beyond the angle of repose. Top right: Rolling regime. Dashed
line indicates angle of repose of granular material. There is a continuous avalanche of
particles. Bottom left: Cataracting regime. Particles are ejected into the air. Bottom
right: Centrifuging. Particles are forced outwards to the walls. The centrifugal force is
now greater than the force due to gravity.

It has been shown (Henein et al., 1983) that slumping and rolling are uniquely described by the rotational

speed of the cylinder, the bed depth, the cylinder diameter and a few basic material properties. This group

also began the use of Bed Behaviour Diagrams, a useful tool for rotating cylinder representation.

At low rotation speeds (low Froude number), the flow is characterised by individual avalanches, one

after another. This is termed the avalanching regime. At higher speeds (rolling regime), a thin, rapidly

flowing layer continuously flows down the free surface, which can be nearly flat. At even higher speeds,



2.2 BRAZIL NUT EFFECT 5

particles begin to leave the surface (cataracting regime), being propelled into the air via inertial effects.

At Fr = 1, centrifuging occurs and the particles stick to the walls.

Magnetic resonance imaging, as carried out by Nakagawa (Nakagawa et al., 1993) has revealed im-

portant features of the rolling regime. The free surface flow is nearly fluid-like, having a linear velocity

profile across the flow, and the velocity is maximum at the middle of the flowing layer. Clement (Clement

et al., 1995) show similar results for a two dimensional system.

In all of these regimes, particles only flow at or near the surface. The rest of the granular material exists

as a solid body and rotates with the cylinder. It is then of interest to understand what happens at the free

surface, in what is known as the shear layer. This layer is the key to understanding size segregation in

any flow. As a first step to understanding, we notice that segregation occurs in the shear zone, where

particles at different heights move at different speeds, and hence can mix and segregate.

Many other types of segregation are evident in mixing flows, such as radial segregation and axial banding

in rotating cylinders, kinetic sieving in inclined chute flow and most famously, the Brazil nut effect.

2.2 Brazil nut effect

When shaken, granular mixtures exhibit a particularly well publicised form of segregation. The popular

scientist would have heard of the “Brazil nut effect” (Rosato et al., 1986), wherein large particles rise to

the top of a container of a poly-disperse mixture after prolonged vibration.

Rosato explains that the Brazil nuts rise because small nuts can squeeze into small holes and fall down,

but the converse cannot occur. As a result, large particles rise through the bulk, stopping at the free

surface. Another view, proposed by Knight (Knight et al., 1993), shows that there is convection occur-

ring in the pile. The downstream convection occurs in a narrow band near the edges of the container,

while the center of the container rises. Because of the narrowness of the downstream convection current,

large particles are excluded from passing downwards and so there is a net movement of large particles

upwards.
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FIGURE 2.2: The Brazil nut effect, as pictured by Rosato (Rosato et al., 1986). The
large black particle rises to the top of the pile after the pile is shaken numerous times.
The configurations were obtained after 0, 10, 30, 40 and 60 shakes (left to right). The
name is used to describe a packet of mixed nuts, where the Brazil nuts (the largest of
the commonly available edible nuts) are usually at the top of the packet when opened.

2.3 Heap formation

Segregation commonly occurs in a shear layer of a flow, such as in the case of a free flowing avalanche.

For example, Drahun and Bridgwater (Drahun and Bridgwater, 1983) poured a bi-disperse mixture into

a two-dimensional heap, and watched how avalanches created alternating striations of the different par-

ticles. This was further investigated quantitatively by Koeppe (Koeppe et al., 1998) and explained in

detail by Makse (Makse, 1997) as a combination of “spontaneous stratification” and “spontaneous seg-

regation”. The stratification is explained as a result of the difference in angle of repose of the mixture

components. Because of this difference, one component preferentially avalanches, creating layers of

mono-disperse deposition. The segregation is a bulk movement of the large grains to the bottom of the

pile.

This is explained again by Boutreux and de Gennes (Boutreux and De Gennes, 1996) using a coupled set

of equations to describe the local density and profile defined by Bouchard et al (Bouchard et al., 1994).

They propose a very similar explanation, but based on a completely different analytic theory.
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FIGURE 2.3: Steady state solutions of Makse’s heap theory showing stratification and
segregation as two distinct phenomena (Makse, 1997). The grey particles are larger
than the black particles.

2.4 Radial segregation

Radial segregation is an example of shear layer segregation in circular systems. It is noted that denser

or smaller particles migrate towards the inside of any curve, such as the core of a rotating cylinder.

Nityanand et al (Nityanand et al., 1986) conducted experimental work which showed that at low rota-

tional speeds, percolation dominates and the small particles sink to the base, while also moving to the

core, creating a pocket of small particles. Conversely, at higher speeds the opposite occurs with the

small particles moving to the outside of the cylinder.

Further work has been conducted by Khakhar et al (Khakhar et al., 1997) in developing a phenomeno-

logical continuum model in the flowing layer. This model is validated by both Monte Carlo and Particle

Dynamics simulations. Because of the computational limits, only a small number of particles were

investigated, and so close agreement between theory, experiment and simulations was not expected or

achieved.

Khakhar has gone on (Khakhar et al., 1999a) to investigate the dominance of chaotic advection in large

systems. Most laboratory work is done on small systems, where particle diffusion is important, but

scaling up to industrial sized systems requires an understanding of chaotic advection. Analytic work is

compared with both computational work and experimental results. It is shown that mixing time becomes

a function of the geometry of the mixing container, and the difference between circular and non-circular

mixers increases with mixer size.
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FIGURE 2.4: Time evolution of the distribution of a mixture of particles of different
density, from the work by Khakhar (Khakhar et al., 1997). Initially they are randomly
distributed, and subsequent diagrams are after the indicated number of revolutions.
Darker particles are those with higher density. Finally, the streamlines of the flow are
shown.

2.5 Axial banding

When a rotating cylinder is placed with its axis horizontal, alternating axial bands can form due to size

or density differences in particles (Donald and Roseman, 1962). This is believed to be a result of the

difference in angles of repose of the mediums, which causes them to flow at different rates in the axial

direction. Experimentally it has been shown (Donald and Roseman, 1962) that at large rotational speeds,

axial bands form, but at low speeds mixing occurs. This is explained as a result of the angle of repose

being a function of rotational speed. Because larger differences in angle of repose occur at higher speeds,

more segregation occurs.

Radial segregation seems to be an important precursor to axial segregation. Yanagita (Yanagita, 1999)

used a three dimensional cellular automaton to model this phenomenon and was the first to explain the
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transition from radial to axial segregation. He proposed that particles slide on the surface, creating the

axial segregation which is observed in experiment.

FIGURE 2.5: Sketch of axial segregation as portrayed by Yanagita (Yanagita, 1999).
The black and white particles are of different sizes, and when the cylinder is rotated,
segregation forms axially.

MRI imaging has been conducted by Hill (Hill et al., 1997) to validate this work, and view into the

bulk, not merely at the surface. The work has noted that some axially segregated regions exist in the

bulk without extending to the surface. This implies that axial segregation may not in fact be driven

exclusively by a surface phenomenon, as suggested by Yanagita.

2.6 Kinetic Sieving

Kinetic sieving is the main focus of this body of work, and is also the main form of segregation occuring

in granular avalanches. Two bodies of work have been accumulated on this specific phenomenon. The

first was that done by Savage and Lun (Savage and Lun, 1988), and secondly that done by Gray and

Thornton (Gray and Thornton, 2005). These two approaches are wholly different, yet arrive at quite

similar results (as compared in Figure 3.2). With this in mind, we can presume that there is some

overarching theory which underpins both explanations. The aim of this work is to find a simple enough

explanation that we can capture both theories in a comprehensive framework.

2.6.1 Savage and Lun

To begin, we will examine Savage and Lun’s (Savage and Lun, 1988) exceptionally elegant and refined

analysis. Here, two mechanisms are modelled to facilitate size segregation. The first is the “random

fluctuating sieve”, which is a gravity induced flow of particles into voids below them. By arranging the
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flow into layers, particles which are above a vacant hole can pass down into it by free—falling under

gravity. The second is “squeeze expulsion” wherein particles can become dynamically unequilibriated

and be “squeezed” out from their current layer in a random direction. Squeeze expulsion was used as a

mechanism to satisfy overall mass conservation and so it was deemed that its exact physical nature was

unimportant.

By using a maximum entropy argument to find percolation velocities, Savage and Lun derive a contin-

uum theory for particle size segregation in inclined chute flow. Their analytic results are then compared

to experimental work done with polystyrene beads over a 1.1m chute. Two angles of inclination were

tested, 26◦and 28◦, and for two concentrations of fines, 10% and 15%. These results were found to agree

well with the analytic work, although the results obtained from the experimental work is coarse at best.

Instead of mapping individual particles through the flow (which was impossible at the time), particles

were collected in three bins, giving information on the vertical particle size distribution averaged over 1
3

the height of the flow. Because of the coarseness of these measurements, it is hard to show agreement or

disagreement with the analytic work.

FIGURE 2.6: Concentration profiles as a function of distance as portrayed by Savage
and Lun (Savage and Lun, 1988). The concentration profiles are averaged over 1

3 of the
flow, giving very coarse experimental results.

The analytic work does predict a 100% fall line (a line above which no small particles are present) and

a finite time for the flow to segregate fully. This seems to be in keeping with the experimental work, but

the accurateness of these results is undetermined.



2.6 KINETIC SIEVING 11

This model is very complex, being linked to the micromechanics of the problem, which makes it a very

powerful tool for analysis. Yet with all this complexity, we are still left with the inclusion of a fitting

parameter kLT . The answer cannot be wholly determined from material properties alone, and must be

fitted to results. If Savage and Lun went to such vast lengths to describe the flow in terms of each

individual interaction between each set of particles, why should such a parameter be necessary?

2.6.2 Gray and Thornton

The second dominant theory explaining kinetic sieving is that proposed by Gray and Thornton (Gray

and Thornton, 2005). In their paper, a binary mixture theory is used to formulate a model for kinetic

sieving. The model is based on the same percolation idea, where small particles fall through available

void space in the bulk, and lever large particles upwards.

The model uses conservation of mass and momentum in mixture theory to express the velocities of

the components in terms of their partial densities and partial pressures. A large assumption is the

fact that the percolation velocities of the components is a constant through the bulk. It is taken to

be qGT = ±B
c g cos(ζ), where ζ is the inclination of the slope, c is the interparticle friction, and B is

a dimensionless parameter. This is intended to account for varying slope, particle size, roughness and

elongation. It fails to account for the interaction between particles, which is governed by the nature of

the shear flow. Gray and Thornton define φ as the small particle concentration at any point. They use φ0

to indicate the homogeneous small particle concentration at the inlet, which is constant over the height.

A non-dimensional segregation equation is ultimately found in terms of the small particle concentration

φ, the downslope velocity u, the height z, the time t and the segregation number Sr, as follows:

∂(φu)
∂t

= Sr
∂(φ(1− φ))

∂z

This equation is then solved for varying initial concentration φ0, varying velocity field u and segregation

number Sr, a fitting parameter which defines the non-dimensional time taken to fully segregate. This

analytic theory is then solved for both the time evolution of the flow and the steady state solution. Gray

and Thornton require an additional assumption that there exists 3 discontinuities in φ for all shear cases,

in the form of shocks. Two of these occur at the top and bottom of the flow, and propagate towards each

other through the medium. Where they meet, the third discontinuity forms, at the triple point of the flow.
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FIGURE 2.7: Time evolution of plug flow (u = 1) with φ0 = 50%. Bulk flow is
from left to right. Black is φ0 = 0%, gray is φ0 = 50% and white is φ0 = 100%.
Two concentration shocks propagate towards each other over time, meeting at the triple
point, where the system is fully segregated (x = 1, z = 0.5).

From this point, two separate flows exist, that of exclusively large particles at the top, and small particles

at the bottom.

A major weakness of this theory is the statement that percolation velocity is constant. This has neither

been proven nor even evidenced. In fact, the competing theory of Savage and Lun proposes that the

percolation velocity is a function of the shear rate, dudz .

Because of this assumption, Gray and Thornton predict that segregation occurs in plug flow, as shown

in Figure 2.7. Plug flow is a case where the downslope velocity is constant along the height of the flow,

such as in rigid body motion. In this case there is no change in the orientation of particles with respect

to one another, and so no segregation should or can occur.

Figure 2.8 implies that for different shear cases, the height of the final discontinuity should vary (looking

down each column). This may be the case for compressible flows, but Gray and Thornton have explicitly

stated that their model is accounting for incompressible flow only. We then ask, why would these heights

change just because of the different shear regime?
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FIGURE 2.8: Gray and Thornton’s steady state solutions for four different velocity
profiles and two different initial concentrations. Left: φ0 = 50%. Right: φ0 = 30%.
Top: plug flow, u = 1. Second: basal slip, u = 0.5 + z

2 . Third: simple shear u = z.
Bottom: Bagnold velocity profile u = 5

3(1 − (1 − z)
3
2 ). Sr = 1 for all cases, i.e. all

solutions fully segregate at x = 1.

2.7 Schelling

We look now at a seemingly unrelated field, that of socio-economic modelling; in particular the Schelling

model (Schelling, 1969), which analyses the segregation that arises from “discriminatory individual

choice”. Schelling faced the daunting task of describing people’s free will and independent thought in

an objective and prescriptive fashion. He described a model wherein the bulk population moved as a

result of individual choices, and went so far as to describe why people moved in terms of a single rule.
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People prefer to live nearby people of the same nature, be it race, sex, age or any other denomination:

the driving force people feel is not to be outnumbered (Clark, 1991). They will constantly move and

reshuffle until in a local majority, or some predetermined proportion. Happy people stay, unhappy people

move.

Taking the analogy to granular mixtures, we have the same bi-disperse medium, with two grains of

different sizes wanting to move away from one another. We can now dispense with all of the mechanics

of their movements, since we know how they want to move. If they are unhappy rocks, they want to

move towards their own kind. It is a very human sentiment for a rock.

FIGURE 2.9: Top: An initial orientation of 0’s and #’s in Schelling’s model (Schelling,
1969). Bottom: Final segregated state of 0’s and #’s. From an initially randomly
distributed state, they have moved into regions of local majority.



CHAPTER 3

Motivation and Approach

There is genuinely a need for further investigation into all aspects of granular research. Avalanches

pose a significant risk and area of uncertainty in both landslides and concrete production. We do not

know how to design a house to resist an avalanche, nor how to pour cement and aggregate to stop them

segregating before we mix them.

When a landslide occurs, we see a fast flowing region of particles moving at the free surface of the flow.

Due to the chaotic and turbulent nature of the flow, there is a large degree of mixing and redistribution

of particles. Because of this, we do not expect the particle size distribution to change in a predictable

manner as we move downslope.

In a slightly less energetic flow, such as inclined chute flow at moderate angles (i.e.those near the friction

angle of the material), we see what could be termed ‘laminar’ flow of particulate matter. In these

conditions, many interesting phenomena arise. The one studied here is that of particle size segregation

via kinetic sieving.

15
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FIGURE 3.1: Effect of kinetic sieving on particles flowing down an inclined slope from
left to right. At the left, the particle size distribution is constant with height, while at
the right it varies with height.

When we have a mixture of two (or more) particle sizes, we find that as the flow propagates downslope,

the mixture segregates into areas of uniform particle size. This comes about as a result of a mechanism

known as kinetic sieving. As the particles roll down the slope, void spaces are created by the collision

of the particles. Since a small particle is more likely to fit into a void than a large particle, we have a

net movement of small particles downwards through the bulk, and a corresponding movement of large

particles upwards. The speed of this movement is termed the percolation velocity.

The two main theories in the field of kinetic sieving are those described by Gray and Thornton (Gray and

Thornton, 2005) and Savage and Lun (Savage and Lun, 1988). They both describe thin, rapidly flowing

avalanches of bi-disperse mixtures down an inclined chute. Gray and Thornton use a binary mixture

theory to find concentration shocks which define their solutions. Savage and Lun use a maximum entropy

argument to arrive at a method-of-characteristics approach which describes a concentration profile. Each

of these place significant effort into conserving momentum and energy.

Because these two theories have different forms and produce similar results, we can infer that the true

behaviour of the system is some combination of the two. In the simplest possible terms, we wish to

analyse both theories and find their similarities.

Often, the macroscopic behaviour of a system made up of various interacting components does not

depend on the details of the interactions, but the collective behaviour (Chopard and Droz, 1998). The

aggregate effect of all the microscopic interactions results in behaviour mostly related to the generic
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features of microscopic interactions. The complexity of the macroscopic behaviour is disconnected

from that of the microscopic, even though one is driven by the other.

With this in mind, we note that both theories include a mean segregation velocity which dictates the

rate at which segregation occurs. Gray and Thornton have defined the mean segregation velocity, as

qGT = ±B
c g cos(ζ), where ζ is the inclination of the slope, c is the interparticle friction, and B is

a dimensionless parameter. Savage and Lun proposed a different, but related equation of the form

qSL = Da(dudz )(q̃b − q̃a), where Da is the diameter of the large particles, dudz is the shear rate and q̃a,q̃b

are the non-dimensional volume averaged velocities of the two constituents in the downslope direction.

FIGURE 3.2: “The shock positions for the Savage and Lun theory (dashed line) and the
current theory [Gray and Thornton] (solid line) for homogeneous inflow concentrations
of 50% (left panel) and 10% (right panel) in a simple shearing flow with Sr = 1. The
distances for complete segregation to occur are comparable for the dilute case, but differ
significantly at larger concentrations.” (Gray and Thornton, 2005)

A comparison of the results predicted by the two theories is contained in the seminal work published by

Gray and Thornton, and is included above, in Figure 3.2.

Gray and Thornton use a dimensionless parameter to indicate the specific initial conditions of the prob-

lem, the segregation number Sr:

Sr =
qL

UH

where L,H and U are the typical avalanche length, height and downslope velocity magnitudes respec-

tively.
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Even though many theories have been attempted to describe this work, no detailed description of the

shear stresses have been successfully verified experimentally. Rognon et al (Rognon et al., 2007) have

defined the shear stresses using a numerical discrete element method, but the accurateness of this has

not been verified in a laboratory.

We therefore know before we start, that we must attempt to verify our analytic and computational work.

We choose to do this using an adaptation of the shear ring test. It consists of two stationary, concentric

cylinders, and two annuli which fit between the cylinders. The lower annulus is free to rotate, and is in

fact turned by a motor. The top annulus is fixed from rotating, although it can be lowered, raised and

weighted.

FIGURE 3.3: Experimental setup. Granular material is placed in the ring, where it is
rotated to simulate avalanche flow. Optional weights can be placed on the free surface
of the flow to impose loading and vary the shear case. Both walls are transparent to
allow data accumulation via time lapse photography.

By placing particles between the two cylinders and the two annuli, and rotating the base annulus, shear

flow is induced in the particles. A variety of shear cases can be achieved by varying the loading and the

rotation speed.
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As the system is circular and not linear, we expect additional shear stresses to develop in the radial

direction. Radial stresses will be important when the centripetal forces are of the order of the vertical

forces. We therefore set:

mrω2 << mg

ω <<

√
g

r

For our radius of approximately 0.3m,

ω << 5.7rev/sec

We can therefore neglect the radial shear forces for the purpose of this investigation, since we choose to

operate at low angular speeds (less than 1
2rev/sec).

FIGURE 3.4: The shear ring apparatus after construction. Perspex walls are mounted
on a wooden frame, which holds both the shear ring and the motor.
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We immediately ran into implementation problems for our setup, as the large shear ring test required

a seal between the moving base plate and the rigid walls. A first iteration (outlined in Figure 3.5) was

constructed but failed to adequately seal the joint. Because of this, particles were crushed in the joint

and small particle fragments jammed the rotating mechanism, rapidly burning out our small motor. As

a result of this, a second iteration was envisaged and constructed.

FIGURE 3.5: First choice of slip mechanism between walls and base plate. This mech-
anism failed to adequately keep particles out of the gaps between the walls and the base
plate. This was mainly due to the large tolerances in the system because of the lack of
consistent curvature in the walls.

The second iteration used perspex and metal instead of timber for the housing, and so was more stable

and precise in its construction. We reduced the tolerances from 5mm to less than 2mm at the joint

between the walls and the base plate, as shown in Figure 3.6. This stopped whole particles falling into

the joint. We also enlarged the gap between the rotating plate and the base, allowing falling dust to pass

out of the system without being trapped. This allowed us to successfully run experiments.

FIGURE 3.6: Second choice of slip mechanism between walls and base plate. This
mechanism was adopted to keep particles out of the cavity formed at the meeting of
the walls and base plate. We have significantly reduced the tolerances of the system,
enabling a much closer fit between rotating base plate and stationary walls. The lack
of consistent curvature of the walls was overcome by machining a round plate which is
attached to the base of the outer wall. This fits with a very small tolerance (< 1mm).
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The choice of a suitable granular mixture was decided based on particle size, uniformity of particles,

consistent roundness of particles and strength. We have chosen mung beans (rich green colour) as our

large particles and tapioca seeds (stark white colour) as our small particles. These exhibit a diameter

ratio of approximately 1.8, similar to the glass beads used successfully by Savage and Lun (Savage and

Lun, 1988). Mean properties of the two particles have been obtained using a particle analyser and are

outlined in the table below.

Material CE Diameter (mm) Standard deviation (mm) Aspect ratio Standard deviation
Mung bean 4.87 0.26 0.807 0.059

Tapioca seed 2.73 0.20 0.942 0.040

TABLE 3.1: Material properties for mung beans and tapioca seeds

CE Diameter is the circular equivalent diameter - i.e. the diameter of the circle with equivalent cross-

sectional area to our particles. Aspect ratio is the maximum particle length divided by the minimum

particle length in cross section. These values are all calculated by the particle analyser, for 40 mung

beans and 40 tapioca seeds.

FIGURE 3.7: A mixture of mung beans (green) and tapioca seeds (white). The rela-
tive size ratio of approximately 1.5 will cause rapid segregation, and the sharp colour
contrast will enable simple particle size distribution measurements by particle image
velocimetry.



3 MOTIVATION AND APPROACH 22

The choice of particles allows us to fit approximately 20 grains across the width of the apparatus. This

should be sufficient to neglect edge effects at the walls and observe real avalanching at the centre of the

flow.

FIGURE 3.8: A top down view of the system after segregation. Mostly green particles
are visible from the top, indicating that there is a high concentration of large particles
there.

Even though our particles are not entirely round or smooth, we can account for these effects in our fitting

parameter k.

While at this stage we do not have a technique for finding either the particle size distributions or shear

stresses experimentally, work is being done on implementing particle image velocimetry techniques

using high speed cameras and post-processing to track individual particles, and infer some continuum

properties.
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FIGURE 3.9: A side view of the system after segregation. There are noticeably two
regions of differing particle size distribution. We see small particles at the bottom, and
large particles at the top.

This work aims to describe the phenomenon in its simplest terms, as described above, with a cellular

automaton. Next, we wish to propose a continuum mechanical approach which is the analog of our cel-

lular automaton. Both of these will then be compared and contrasted, and ultimately tested qualitatively

against laboratory experiment, in the form of a shear ring test.



CHAPTER 4

Research Methodology and Results

Three distinct types of work were undertaken as part of the thesis project. Firstly, a numerical model,

known as a cellular automaton, was devised and coded. This lead us to an analytic form of our solution,

which was modelled separately. Thirdly, both results were compared to a real world experiment using

a custom made ring shear apparatus. These approaches, and their respective results, are outlined in this

section.

The cellular automata is one of the simplest types of numerical simulation. For this reason, it is used to

model highly dynamic situations. By creating a simple system that behaves in a complicated manner,

we feel that our assumptions in creating the cellular automata reflect quite accurately what is occuring

in the physical system.

What we have found, in fact, is that our cellular automata predicts not only the global behaviour of the

system, but gives us an insight into the mechanics of the interactions between the particles.

24
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4.1 Cellular automata

4.1.1 Model

The cellular automata defined here works in a regular 1 dimensional lattice, where the diameter of each

particle, di, is a Boolean variable attached to each site i of the lattice. The model ignores physical size

differences between particles, as well as all other physical properties. We then define a single rule which

specifies the time evolution of the diameter at each site.

FIGURE 4.1: Orange are small particles, Blue are large particles. Two particles at-
tempting to fall into an available space. The small particle is more likely to fit into
any given void, and so we have a net movement of small particles downwards, and a
corresponding movement of large particles upwards.

In Figure 4.1, either of the two particles indicated could fall into the available space. We find that the

smaller particle is more likely to fit in the void, and so this has a greater probability of falling. This can

be expressed in simplest terms in one dimension as two particles swapping places. We then describe our

rule as the following; with some frequency f

di ⇔ di−1 if di < di−1

Figure 4.2, below, illustrates two iterations of the rule on a three particle system. In both cases, the small

particles swap with the larger particles, creating segregation. We run our simulation simultaneously in
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many instances, and average the particle diameter at each point across these simulations, as shown in

Figure 4.3. By compiling the data across all time steps, we gain a picture of the flow moving downslope.

FIGURE 4.2: Orange are small particles, Blue are large particles. The automata mech-
anism, where large and small particles swap places with frequency f . Three iterations
of this mechanism are shown, for two different initial configurations. In both cases, the
small particles end up on the bottom of the pile.

This can be done for varying frequency of swapping, small particle concentration and even for poly-

disperse flows.

FIGURE 4.3: Orange are small particles, Blue are large particles. Individual simula-
tions are averaged to produce mean model behaviour.

The mean diameter at any point is defined as the average diameter of all particles into the page at the

same height. If a particle is larger than the mean diameter at any point, it swaps with a neighbour below,

i.e.di ⇔ di−1 if d > di. The code was written in MATLAB© and is attached in Appendix 1. It is

explained diagrammatically in Figure 4.4.
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FIGURE 4.4: Flow chart describing the cellular automata code. An initial random con-
figuration of particles is processed such that the mechanism outlined above occurs. Af-
ter a sufficiently long time, the time evolution of the flow is outputted.

We begin with an initially randomised set of nodes in two dimensions, with each having a discrete

particle at the node. The diameter of the particle at each node can be either big (0) or small (1). The

two dimensional lattice represents many one dimensional simulations running simultaneously. The data

is randomised such that the average in both directions of the matrix is equal for every row and column.

We call this φ0, the initial concentration of small particles.

Initial particle randomness is ensured both along the height and into the bulk simultaneously by ran-

domly filling an empty matrix with the required number of particles in every row and column, much
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like a binary sudoku, where the sum of each row and column is fixed. This method of random filling

has its drawbacks, however, as there is often not a unique solution for large matrices. This hindrance

is counteracted by constructing large matrices from a superposition of randomly generated smaller ma-

trices. While this ensures that the required concentrations are correct, it also adds a second scale of

randomness to the matrix. This is not ideal, but is sufficient for the purposes of this experiment and

provides optimal randomness in a minimal amount of computational time.

For each timestep, we then check every node. If the node is above a layer of larger average particle

diameter, it has a probability of swapping with the particle directly below it, as defined by our frequency

f . For stability, we iterate in half time steps, such that odd columns are processed separately, before

even columns.

After the system has fully segregated, or at some given time, the time loop stops and a contour plot of

the time evolution is outputted.

The behaviour of the system is determined largely by our parameter f . We have obtained this by extend-

ing Gray and Thornton’s segregation number Sr so that the tendency for our mechanism to occur is a

function such that f ∝ qSL

U ∝
du
dz where du

dz is the shear rate. We can choose a variety of flows to model,

each with their own shear rate. They are summarised in the following table.
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Flow regime u f

Plug flow
u = k f = 0

Simple shear
u = kζ f = k

Bagnold shear
u = k

[
1− (1− ζ)

3
2

]
f = k

√
1− ζ

Shear band flow
u = kζ2(3− 2ζ) f = 4kζ(1− ζ)

TABLE 4.1: Shear flow regimes. Four shear flow regimes discussed in this paper,
namely plug flow, simple shear, Bagnold shear and shear band flow.
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These four shear flows correspond to different physical flows. Plug flow is that observed when a pile of

grains is moved without disturbing the internal structure, i.e.rigid body motion. For this case, obviously,

we expect no segregation. The second case is simple shear, the simplest model for a sheared flow. We

assume zero velocity at the base of the flow, and free flowing at the free surface. We linearly interpolate

between these two points to describe the velocity profile and the shear strain profile. A more accurate

representation of particle flow is that proposed by Bagnold (MiDi, 2004; Silbert et al., 2001). This

velocity profile assumes mono-disperse particle flow, and has been extended by Rognon (Rognon et al.,

2007) for bi-disperse flows.

The constant k is itself a function of B
c g cos(ζ), as described by Gray and Thornton. This includes all

of the contributions due to particle sizes, roughness and circularity.

This theory predicts that the solution will evolve towards a simple limit point in the phase space, ie

that all initial configurations will propagate towards a similar steady solution. Many cellular automata

(Wolfram, 1986; Chopard and Droz, 1998) are known to exhibit such behaviour, and the design of

a cellular automaton that models the correct results implies that the essential aspects of the complex

phenomena have been recognised and reduced to a simple form.

Non-dimensionality

We define a non-dimensional height ζ such that ζ = z
H , where H is the avalanche depth. In our model,

ζ = i
N where N is the total number of nodes in the vertical direction and i is the current node. We also

define a non-dimensional time τ = j kN = tkUH . The first equality refers to the cellular automata, where

j is the timestep. The second equality refers to the physical time t, where U is the average bulk velocity

across the depth and H is the avalanche height.

The flow is described by φ, the small particle concentration. We find φ by summing the number of small

particles at a given height across all of the simulations, and dividing by the total number of simulations.

4.1.2 Results

The cellular automata outputs a contour plot of the time evolution of φ for any applied shear regime and

initial concentration of φ. Figure 4.5 outlines the case of Bagnold shear, with initial concentration of

32%. Because of the large percolation frequencies at the base of the flow, we see a concentration shock

- a discontinuity in the small particle concentration. At the top of the flow, however, the percolation
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frequency is uniquely zero, and a second concentration shock does not develop. In this case, there is

no robust definition of complete segregation. In a flow of infinite width, segregation would never fully

occur.

4.1.2.1 Overview

To understand the results outputted by the cellular automata, we must begin by discussing the shear flow

in question. Figure 4.5A shows a Bagnold shear flow, with the velocity field given by u = 1− (1− ζ)
3
2 .

This implies that the percolation frequency, f is near zero at the top, and large at bottom, as shown

in Figure 4.5B. This means that we expect rapid segregation at the bottom of the flow, and only slow

segregation at the top. We therefore do not expect a concentration shock at the top of the flow.

While we do not expect a concentration shock, we expect that in a situation such as described by Savage

and Lun, with a small number of particles (they have a flow of 10-20 particles deep) there would be a

well defined line above which no particles exist. This line would then correspond to the lower bound of

the bluest region contained in our results, which behaves in a similar fashion to that described by Savage

and Lun.

u = k
(

1− (1− ζ)
3
2

)
f = k

√
1− ζ τ

FIGURE 4.5: A: Bagnold velocity profile. B: Percolation frequency distribution. C:
Steady state solution for a Bagnold shear case. Bulk flow is from left to right. The
chute is initially filled with a mixture of 32% small concentration. At the inlet, more
of the mixture enters the chute and flows downslope. Colours represent small particle
concentration φ. Green lines are experimental results of Savage and Lun (Savage and
Lun, 1988) as displayed by Gray and Thornton (Gray and Thornton, 2005).

Figure 4.5 has an overlay of the analytic work done by Savage and Lun, as pictured in (Gray and

Thornton, 2005). In this work, the concentration was described in terms of volume. This has been
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converted from the stated 10% small concentration by volume, to 32% concentration by particle number

for the purposes of the comparison.

4.1.2.2 Plug flow

For the simplest case of particle flow, we model plug flow. Gray and Thornton expect segregation to

occur for this regime (as pictured in Figures 2.7 and 2.8. Plug flow describes a flow which does not

change while propagating. From the perspective of any given particle, its neighbours would not move

relative to itself as it flowed downslope - imagine a bucket of particles being picked up and moved

without disturbing the contents. Obviously, we do not expect to observe segregation in this regime.

Because Gray and Thornton have neglected the role of the shear interaction of the particles as a precursor

for segregation, they expect segregation where it is evident that there should be none.

4.1.2.3 Simple shear

Figure 4.6 represents the time evolution of simple shear flow. We note that this is described by f1 = k1,

i.e. the frequency is constant along the height. It is evident that the same results are found as those

predicted by Gray and Thornton for the plug flow case, and our analytic solution matches theirs for this

case only. The characteristics are linear, and the concentration shocks move towards a triple point at

fixed speed.

τ

FIGURE 4.6: Time evolution for simple shear flow, i.e. f1 = k. Bulk flow is from
left to right. The chute is initially filled with a mixture of 30%, 50% and 80% (left to
right) small concentration. At the inlet, more of the mixture enters the chute and flows
downslope. Colourbar represents small particle concentration φ.

The position of this triple point along the slope is varied by changing k1, and the position above the base

of the avalanche is varied by changing φ.
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4.1.2.4 Linear shear

A more realistic case is that of a linear shear profile, as shown in Figure 4.7. Here we see only one

concentration shock, at the bottom of the flow. Again, full segregation takes an infinite time to occur.

τ

FIGURE 4.7: Time evolution for linear shear flow, ie f = k(1− ζ). Bulk flow is from
left to right. The chute is initially filled with a mixture of 30%, 50% and 80% (left to
right) small concentration. At the inlet, more of the mixture enters the chute and flows
downslope. Colourbar represents small particle concentration φ.

4.1.2.5 Shear band flow

Shear band flow presents an interesting caseas pictured in Figure 4.8. Here, concentration shocks de-

velop at neither the top nor the bottom. There is, however a sharp concentration shock which develops

rapidly at the near fully developed state. Again, segregation never fully occurs.

τ

FIGURE 4.8: Time evolution for shear band flow, ie f = kζ(1− ζ). Bulk flow is from
left to right. The chute is initially filled with a mixture of 30%, 50% and 80% (left to
right) small concentration. At the inlet, more of the mixture enters the chute and flows
downslope. Colourbar represents small particle concentration φ.
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4.1.2.6 Bagnold shear

Bagnold shear is an accurate model for flow of mono-disperse spheres down an inclined plane. As

compared with the results of Savage and Lun (Figure 4.5), this model presents a realistic and appropriate

choice for our model of real-world behaviour. A concentration shock builds at the bottom of the flow

only. This is shown for three initial concentrations of φ in Figure 4.9 below.

τ

FIGURE 4.9: Time evolution for Bagnold shear, i.e. f2 = k
√

1− ζ. Bulk flow is from
left to right. The chute is initially filled with a mixture of 30%, 50% and 80% (left to
right) small concentration. At the inlet, more of the mixture enters the chute and flows
downslope. Colourbar represents small particle concentration φ.

While this regime is a good approximation for a mono-disperse medium, it does not account for the

bi-disperse flow. To accurately account for this, we could use the shear rate defined by Rognon et al

(Rognon et al., 2007). This shear rate, however, has not yet been implemented in our model, due to the

additional complexity.

4.1.2.7 Concentration shocks

We note in Figure 4.10 that for the simple shear case, there exists a sharp discontinuity, or shock, at

both the top and bottom boundaries (left side). Quite distinctly differently we note that on the right hand

side, there is only a shock at the bottom of the flow, and we have a continuous surface describing our

concentration profile. This is a major difference between our theory and both previous theories, and we

explain it as a result of the low shear at the top of the flow, where we expect very little segregation due

to kinetic sieving. Experimentally, it has been observed that particles jostle and in fact fly over each

other at the free surface, but we consider this to be a separate effect from that of kinetic sieving. This

phenomenon is known as cataraction.
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FIGURE 4.10: A comparison of two cases, both with initial concentrations of 50%.
Left: Simple shear. Right: Bagnold shear. The bottom figures are 3D surface plots of
the same data, showing the sharp discontinuties at joints between regions. All joints
between areas are shocks except the top of the Bagnold shear case, where the solution
is continuous.

4.1.2.8 Size discrimination

τ
FIGURE 4.11: Left: Time evolution for Bagnold shear with initial concentration of
50%. Right: A slice through the plot at left at ζ = 0.5.

Revisitng a previous case, that of homogeneous Bagnold shear, we note that at mid-height in the flow,

at ζ = 0.5, the small particle concentration drops before returning to its initial value, as in Figure 4.11

(left). The right hand side of this Figure is a slice through the plot at left, at ζ = 0.5. It shows that there
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are significantly less small particles present during the intermediate stage before full segregation. We

can then ask ourselves the following:

Are the large particles moving faster than the small ones? How else did they get here from the bottom

before small ones got here from the top?

We now look at a different case, that of heterogeneous initial conditions. By placing a small amount of

large (or small) particles at the top (or bottom) of the flow, we can get an understanding of how rapidly

these two species flow past one another. This is pictured in Figure 4.12. The top two Figures picture

large particles moving upwards through the bulk (left), and small particles moving downwards (right), in

separate simulations. For each case, we use two homogeneous regions of pure small and large particles,

and size the regions in the ratio 1:9.

The bottom graph represents a competition between the two simulations. We place a ’gate’ at some

height d, and time until 90% of the contaminant particles have passed beyond this gate. We have plotted

this time for a range of values of d for both simulations. We note that for any distance moved by

the particles, the small particles (yellow line) take longer to reach the gate. This proves that the large

particles are in fact faster than the small particles!
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τ

FIGURE 4.12: Top left: Large particles rising to the top of the flow, under Bagnold
shear. Top right: Small particles sinking to the bottom of the flow, under Bagnold shear.
Bottom: The time for 90% segregation at a particular height d. The blue line is large
particles moving upwards, and the yellow line is small particles moving downwards.
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4.2 Analytic form

4.2.1 Model

By taking conservation of mass about a single node, we can show that this cellular automata approach

can be reduced at a continuum model, comparable to that of Gray and Thornton. We begin with the

fluxes present at a single node, as shown below.

FIGURE 4.13: Fluxes of small concentration at a node. We take conservation of mass
about this point to define our continuum theory.

For this process we use non-dimensional units as defined previously. Here φ is the small particle con-

centration, u is the downslope velocity, ζ is the height and τ is the time. Taking conservation of mass:

φ(ζ, τ)∆ζ+f(ζ+∆ζ)φ(ζ+∆ζ, τ)(1−φ(ζ, τ))∆τ−f(ζ)φ(ζ, τ)(1−φ(ζ−∆ζ, τ))∆τ = φ(ζ, τ+∆τ)∆ζ

Which reduces to:

∂φ

∂τ
=
∂(fφ)
∂ζ

− ∂(fφ2)
∂ζ

Or alternatively,
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FIGURE 4.14: Concentration shocks developing in three steady state solutions. All
have k = 1. From left to right: φ0 = 30%, φ0 = 50% and φ0 = 80%. The shocks
split the domain in three areas, split by the black lines. The top area contains only small
particles, the bottom only large particles and the region on the left contains a uniform
mixture of the two, at the initial concentration.

∂φ

∂τ
=
∂(fφ(1− φ))

∂ζ

For simple plug flow cases, we can take f = k to be a constant with depth, ζ. Our solution now

reduces to that of Gray and Thornton. An analytic solution is now available by use of the method of

characteristics, as shown in Figure 4.14. By solving for the known concentration shocks, we have again

shown linear concentration shocks in the system. The position of the shock varies with k1 and initial

concentration φ0.

With reference to the analytic form proposed by Gray and Thornton,

∂(φu)
∂τ

= Sr
∂(φ(1− φ))

∂ζ

we see that our cellular system neglects the variation of downslope velocity with height. Our cellular

automata has functioned in a Lagrangian space, i.e. we have neglected the downslope velocities due to

the limits of the simplistic approach. In our analytic form, however, we are free to add such a rule. By

now including this in the system, we get the following conservation form, as shown in Figure 4.15.

This modifies our conservation equations to become:

∂(φu)
∂τ

=
∂(fφ(1− φ))

∂ζ

which reduces to
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FIGURE 4.15: Fluxes of small concentration at a node, including contributions due to
varying downslope velocity with height. We use this model to define our final analytic
theory.

u
∂φ

∂τ
=
∂(k dudζ φ(1− φ))

∂ζ

We propose this as our final analytic theory to model particle size segregation.

4.2.2 Results

Comparison of the analytic and cellular automata simulation has turned out to be difficult because of

the known shocks forming in the solution. Attempts have been made to both analytically and computa-

tionally solve the continuum model. Analytically, the method of characteristics has been employed to

find a characteristic solution for the simple shear case, as shown above in Figure 4.14. We have solved

numerically for the shear band regime, as we know that this should not exhibit any shock formation at

the beginning of the flow. Only after approximately 90% of the segregation has occured do we expect

the discontinuity to break the numerical solution of the analytic model.

Because we always expect a discontinuity in the steady state solution, we know a priori that most nu-

merical methods will fail. A finite difference solver has been used to describe the shear band flow case

until a discontinuity in the solution is reached. This is pictured below in Figure 4.16, and compared

with the cellular automaton solution for the same time and initial conditions. The results agree within

5%, up to the point at which a discontinuity is formed. From then on, the numerical method for solving
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FIGURE 4.16: Comparison of cellular automaton and continuum approaches with same
initial conditions φ0 = 0.5 and f = ζ(1 − ζ). Left: Cellular automaton. Right:
Continuum approximation using a numerical solver. Bottom: Difference between two
top plots. Note that the statistically based cellular automaton is rough, while the exact
solution from the analytic model is smooth.

the analytic theory fails. A shock capturing method must be employed to accurately model the analytic

solution, but this was beyond the scope of this thesis work.

The two simulations above vary not only because of the statistical nature of the cellular automaton. An

important difference is that located at (ζ = 1
2 , τ = 1), where the concentration shock begins. The finite

difference model used to compute the solutions to the analytic equation fails entirely at discontinuities

in the solution space, and so cannot be relied upon for this system.



CHAPTER 5

Summary of Results

5.1 Cellular automata

Our model predicts that in a physical flow, such as that approximated by Bagnold shear, a concentration

shock develops at the bottom of the flow only. The appearance of a shock at the top of the flow is a result

of the small number of particles being observed. Flow near the free surface in Bagnold shear can be

approximated by plug flow, corresponding to a situation with extremely slow segregation. This supports

our predictions in distinction from the previous two theories.

The time for segregation has been shown to be a function not only of the shear regime, but also the

particle size. Interestingly, and in contrast to previous theory, the bigger particles percolate faster than

the smaller particles. While one may at first postulate that particles would trickle through the bulk faster

than others could be leveraged over them, this has been shown to be false.

5.2 Analytic model

The cellular automata lead directly to a continuum theory which described the model. This has been

compared to existing theories and shown to be substantially superior. The mathematics is derived in an

intuitive and easily reproducible form, allowing for a more complete understanding of the meaning of

the governing equation. This advective partial differential equation has been solved using the method of

characteristics and numerical finite differencing methods.
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CHAPTER 6

Conclusion

Beginning with the simple idea that segregation in 1 dimension is the swapping of particles, we have

devised both a cellular automata and a continuum mechanics approach which are more physical repre-

sentations of kinetic sieving than those previously obtained.

It has been shown here that the previous work in this field can be consolidated into a cohesive, simple

theory which contains the essence of both works. Just as the previous works were both empirically fitted,

our single fitting parameter can adequately reproduce works obtained with either method.

We note that a dissociation exists between two levels of reality in the system. The pattern forming

behaviour can be explained in terms of the percolation frequency, with quite little known about the

structure or interaction of the particles, but the percolation frequency itself must be explained in another

way. This has been done, for example, by Savage and Lun using a maximum entropy approach.

We have shown that in fact large particles segregate faster than slow particles, in sharp distinction from

previous theory. This effect is due to the interaction of the shear stress with particle percolation veloci-

ties.

Starting with a very simple cellular automata, it has been shown that previously rigorously derived

results can be explained without the analytic effort. By measuring the happiness of the particles, their

likelihood of moving is found. For these particles, just as with humans, they are happiest with their own

kind. Happy rocks stay, unhappy rocks leave and the big ones leave faster than the small ones.

43



References

I.S. Aranson and L.S. Tsimring. 2005. Patterns and collective behavior in granular media: Theoretical
concepts. Arxiv preprint cond-mat/0507419.

J.P. Bouchard, M. Cates, R. Pranash, and S.F. Edwards. 1994. A model for the dynamics of sandpile
surfaces. J. Phys. I France, 4.

T. Boutreux and PG De Gennes. 1996. Surface flows of granular mixtures: I. General principles and
minimal model. J. Phys. I France, 6:1295–1304.

J. Bridgwater and N. D. Ingram. 1971. Rate of spontaneous inter-particle percolation. Chemical
Engineering Research and Design, 49a:163–169.

D. Brone and FJ Muzzio. 1997. Size segregation in vibrated granular systems: A reversible process.
Physical Review E, 56(1):1059–1063.

Bastien Chopard and Michel Droz. 1998. Cellular Automata Modeling of Physical Systems. Cambridge
Univ Press.

WAV Clark. 1991. Residential preferences and neighborhood racial segregation: A test of the Schelling
segregation model. Demography, pages 1–19.

P.W. Cleary, G. Metcalfe, and K. Liffman. 1998. How well do discrete element granular flow models
capture the essentials of mixing processes? Applied Mathematical Modelling, 22(12):995–1008.

E. Clement, J. Rajchenbach, and J. Duran. 1995. Mixing of a granular material in a bidimensional
rotating drum. Europhysics Letters, 30(1):7–12.

VN Dolgunin, AN Kudy, and AA Ukolov. 1998. Development of the model of segregation of particles
undergoing granular flow down an inclined chute. Powder technology, 96(3):211–218.

M.B. Donald and B. Roseman. 1962. Mixing and demixing of solid particles. part 1. mechanisms in a
horizontal drum mixer. British Chem. Eng.

J.A. Drahun and J Bridgwater. 1983. The mechanisms of free surface segregation. Powder Technology,
36(1):39.

J. Duran and R. Jullien. 1998. Attractive Forces in a Granular Cocktail. Physical Review Letters,
80(16):3547–3550.

J. Gray and K. Hutter. 1997. Pattern formation in granular avalanches. Continuum Mechanics and
Thermodynamics, 9(6):341–345.

44



REFERENCES 45

J. Gray and AR Thornton. 2005. A theory for particle size segregation in shallow granular free-
surface flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
461(2057):1447–1473.

H Henein, J.K. Brimacombe, and A.P. Watkinson. 1983. Experimental study of transverse bed motion
in rotary kilns. Metallurgical Transactions B, 14:191–205, Jun.

KM Hill, A. Caprihan, and J. Kakalios. 1997. Bulk segregation in rotated granular material measured
by magnetic resonance imaging. Physical Review Letters, 78(1):50–53.

BPB Hoomans, JAM Kuipers, and WPM Van Swaaij. 2000. Granular dynamics simulation of segregation
phenomena in bubbling gas-fluidised beds. Powder Technology, 109(1-3):41–48.

DA Huerta and JC Ruiz-Suarez. 2004. Vibration-induced granular segregation: a phenomenon driven
by three mechanisms. Arxiv preprint cond-mat/0402256.

N. Jain, J.M. Ottino, and R.M. Lueptow. 2005. Combined size and density segregation and mixing in
noncircular tumblers. PHYSICAL REVIEW E Phys Rev E, 71:051301.

DV Khakhar, JJ McCarthy, and JM Ottino. 1997. Radial segregation of granular mixtures in rotating
cylinders. Physics of Fluids, 9:3600.

DV Khakhar, JJ McCarthy, JF Gilchrist, and JM Ottino. 1999a. Chaotic mixing of granular materials in
two-dimensional tumbling mixers. Chaos: An Interdisciplinary Journal of Nonlinear Science, 9:195.

DV Khakhar, JJ McCarthy, and JM Ottino. 1999b. Mixing and segregation of granular materials in chute
flows. Chaos: An Interdisciplinary Journal of Nonlinear Science, 9:594.

R. Khosropour, J. Zirinsky, HK Pak, and RP Behringer. 1982. Convection and size segregation in a
Couette flow of granular material. Chem. Eng. Sci Phys Rev E, 56:4467.

JB Knight, HM Jaeger, and SR Nagel. 1993. Vibration-induced size separation in granular media: The
convection connection. Physical review letters, 70(24):3728–3731.

J.P. Koeppe, M. Enz, and J. Kakalios. 1998. Phase diagram for avalanche stratification of granular
media. Physical Review E, 58(4):4104–4107, October.

H.A. Makse. 1997. Stratification instability in granular flows. Physical Review E, 56(6):7008–7016.

H.A. Makse. 1999. Continuous avalanche segregation of granular mixtures in thin rotating drums.
Physical Review Letters, 83(16):3186–3189.

G. Metcalfe and M. Shattuck. 1996. Pattern formation during mixing and segregation of flowing granular
materials. Physica. A, 233(3-4):709–717.

GDR MiDi. 2004. On dense granular flows. The European Physical Journal E: Soft Matter and
Biological Physics, 14(4):341–365.

M. Nakagawa, SA Altobelli, A. Caprihan, E. Fukushima, and E.K. Jeong. 1993. Non-invasive measure-
ments of granular flows by magnetic resonance imaging. Experiments in Fluids, 16(1):54–60.



REFERENCES 46

N. Nityanand, B. Manley, and H. Henein. 1986. An analysis of radial segregation for different sized
spherical solids in rotary cylinders. Metallurgical Transactions B, 17B(257), June.

JM Ottino and DV Khakhar. 2000. Mixing and segregation of granular materials. Annual Review of
Fluid Mechanics, 32(1):55–91.

P.G. Rognon, J.N. Roux, M. Naaim, and F. Chevoir. 2007. Dense flows of bidisperse assemblies of disks
down an inclined plane. Physics of Fluids, 19.

A. Rosato, F. Prinz, KJ Standburg, and R. Swendsen. 1986. Monte Carlo simulation of particulate matter
segregation. Powder technology, 49(1):59–69.

A.D. Rosato, D.L. Blackmore, N. Zhang, and Y. Lan. 2002. A perspective on vibration-induced size
segregation of granular materials. Chemical Engineering Science, 57(2):265–275.

SB Savage and CKK Lun. 1988. Particle size segregation in inclined chute flow of dry cohesionless
granular solids. Journal of Fluid Mechanics, 189:311–335.

S.B Savage and J.W. Vallance. 2000. Particle segregation in granular flows down chutes. In Iutam
Symposium on Segregation in Granular Flows: Proceedings of the IUTAM Symposium Held in Cape
May, NJ, USA, June 5-10, 1999, page 31. Kluwer Academic Pub.

SB Savage. 1987. Interparticle percolation and segregation in granular materials: A review. In De-
velopments in Engineering Mechanics: Proceedings of the Technical Sessions on Developments in
Engineering Mechanics Held at the Canadian Society for Civil Engineering Centennial Conference,
Montreal, Quebec, Canada, May 18-22, 1987, page 347. Elsevier.

Thomas C. Schelling. 1969. Models of segregation. The American Economic Review, 59(2).

L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimpton. 2001. Granular flow
down an inclined plane: Bagnold scaling and rheology. Physical Review E, 64(5), October.

Arne Traulsen and Jens Christian Claussen. 2004. Similarity based cooperation and spatial segregation.
Physical Review E, 70:046128.

L. Trujillo, M. Alam, and H.J. Herrmann. 2003. Segregation in a fluidized binary granular mixture:
Competition between buoyancy and geometric forces. Europhysics Letters, 64(2):190–196.

R.A. Wilkinson, R.P. Behringer, J.T. Jenkins, and M. Louge. 2005. Granular materials and the risks they
pose for success on the moon and mars. NASA Publication.

Stephen Wolfram. 1986. Theory and applications of cellular automata. Advanced Series on Complex
Systems, Singapore: World Scientific Publication.

T. Yanagita. 1999. Three-dimensional cellular automaton model of segregation of granular materials in
a rotating cylinder. Physical Review Letters, 82(17):3488–3491.



CELLULAR AUTOMATA MATLAB© SCRIPT 47

Cellular automata MATLAB© script

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% CA - Lagrangian system for segregation %%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% 25/09/09 %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function CA

clear all

global A

lx=2000; % length (into page)

ly=lx/10; % height

for prob=[0.5]; % probability of segregation occuring, k

for small=[0.1:0.1:0.9]; % proportion of small

for flow=[0]; % shear condition parameter

t_c=2*ly/prob;

if flow==0 % simple shear

V=prob*ones(ly,1);

t_max=1.5*t_c;

elseif flow==1 % silbert shear profile vector

V=prob*(1-linspace(0,1,ly)’).^0.5;

t_max=3*t_c;

elseif flow==2 % linear shear

V=prob*(1-linspace(0,1,ly))’;

t_max=2.5*t_c;

elseif flow==3 % shear band

V=prob*(linspace(0,1,ly)’-linspace(0,1,ly)’.^2);

t_max=2.5*t_c;

elseif flow==4 % PLUG FLOW

V=prob*linspace(0,0,ly);

t_max=5;

end
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A=zeros(t_max,ly);

fprintf(’%%%%%%%% SIMULATION STARTING %%%%%%%%\n’)

fprintf(’ly=%d, lx=%d, t_max=%d, flow=%d\n’,ly,lx,t_max,flow)

fprintf(’p=%d, prob=%0.1f, small=%0.2f\n’,p,prob,small)

%% BUILD WORLD %%

fprintf(’Building world... ’)

tic

s = sudoku(ly,lx,10,10,small); % using patch size of 10 for speed

A(1,:)=sum(s,2)/lx;

T=toc;

fprintf(’World built in %2.2fmin\n’, T/60)

fprintf(’Starting time marching\n’)

load(’MyColormaps’,’mycmap’)

T=0; tic

%% MAIN LOOP %%

for time=1:t_max

a=mod(time,2); % odd/even time counter

d_cr=build_d_cr(s,lx,ly); % Build d_cr

for x=1:lx

if mod(x,2)+a==1 % alternate between cases

for y=2:2:ly-1 % case 1

if rand(1)<V(y)

s=swap(s,d_cr,y,x,time);

end
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end

else

for y=3:2:ly-1 % case 2

if rand(1)<V(y)

s=swap(s,d_cr,y,x,time);

end

end

end

end

%% OUTPUT %%

A(time+1,:)=sum(s,2)/lx;

if rem(time,t_max/10)==0

T=T+toc;

tic;

fprintf(’Progress: %3.0f%% Elapsed time: %3.0fmin Remaining...

time: %3.0fmin\n’, time*100/t_max,T/60,T/60*(t_max/time-1))

end

end

figure(1)

set(1,’Colormap’,mycmap)

axes(’fontsize’,30);

contourf(linspace(0,t_max/t_c,t_max+1), linspace(0,1,ly-1), ...

A(:,1:end-1)’,’LineStyle’,’none’)%, colormap(’gray’)%, axis off

caxis([0 1]);

tt=sprintf(’tmax_%d_p_%d_Prob_%.2f_small_%.2f_flow_%.2f_up.png’,...

t_max, p, prob, small, flow);

print (’-dpng’, tt)

% PRINT TXT FILE OUTPUT



CELLULAR AUTOMATA MATLAB© SCRIPT 50

tt=sprintf(’tmax_%d_p_%d_Prob_%.2f_small_%.2f_flow_%.2f_up.txt’,...

t_max, p, prob, small, flow);

csvwrite(tt,A’)

fprintf(’%%%%%%%% SIMULATION FINISHED %%%%%%%%\n’)

end

end

end

end

function s=swap(s,d_cr,y,x,time)

if s(y,x)>s(y-1,x) % SWAP WITH BELOW IF SMALL

tt=s(y,x);

s(y,x)=s(y-1,x);

s(y-1,x)=tt;

end

end

function d_cr=build_d_cr(s,lx,ly)

d=sign(max(0,s)); % denominator to divide by

% AVERAGE THROUGH LENGTH

d_cr=zeros(ly,lx);

for x=1:lx

d_cr(:,x)=sum(s,2)/lx;

end

end

function T = sudoku(ly,lx,patchy,patchx,phi0)

S=[]; M = zeros(patchy,patchx);% time=0;

M_new = zeros(patchy,patchx); count=0;

fprintf(’Number of patches to create: %3.0f ...

\n’,(ly*lx)/(patchy*patchx))
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while size(S,3)<(ly*lx)/(patchy*patchx) % to stitch together

while sum(sum(M))<phi0*patchy*patchx

if M==M_new

count=count+1;

else

count=0;

end

if count==patchy*patchx % IF THAT FAILED, TRY AGAIN

M_new=zeros(patchy,patchx);

end

M=M_new;

i=randi(patchy,1);

j=randi(patchx,1);

if sum(M(i,:))<phi0*patchx && sum(M(:,j))<phi0*patchy

M_new(i,j)=1;

end

end

S=cat(3,S,M);

M = zeros(patchy,patchx); M_new = zeros(patchy,patchx); count=0;

end

T=zeros(ly,lx);

for i=1:ly/patchy

for j=1:lx/patchx

T(1+patchy*(i-1):patchy*i,1+patchx*(j-1):patchx*j) = ...

S(:,:,i+j*(ly/patchy-1));

end

end

end


