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Abstract Granular flows are often characterised by spatial and temporal variations 
in their grainsize distribution. These variations are generally measured by geolo-
gists and geotechnical engineers after a flow has occurred, and two limiting states 
are commonly found; either a power law or log-normal grainsize distribution. Here, 
we use a lattice model to study how the grainsize distribution evolves in granu-
lar systems subject to grain crushing, segregation and mixing simultaneously. We 
show how the grainsize distribution evolves towards either of these grainsize distri-
butions depending on the mechanisms involved in the flow.

1  Introduction

There exist a large number of physical processes in which granular materials advect 
in space, and simultaneously undergo changes to their grainsize distribution—
whether spatial rearrangement, or by changing the physical size of constituent par-
ticles. These include geophysical flows, such as avalanches, rock falls, landslides 
(both submarine and subaerial), mud flows, pyroclastic flows, earthquake faulting 
and debris flows. Such flows are also present in many industrial processes aiming 
at size reduction (comminution), mixing, or de-mixing of powders, grains and ores.

Spatially, grains can either mix (Utter and Behringer 2004) or de-mix (for exam-
ple size segregation is a relatively well studied de-mixing phenomenon) (Savage 
and Lun 1988). Spatial changes in the grainsize distribution over time have received 
significant attention from the granular materials community recently, generally for 

B. Marks (*) 
Advanced Materials and Complex Systems, University of Oslo, 0371 Oslo, Norway
e-mail: benjy.marks@fys.uio.no

I. Einav 
School of Civil Engineering, The University of Sydney, Sydney 2006, Australia
e-mail: itai.einav@sydney.edu.au



34 B. Marks and I. Einav

the particular case of bi-mixtures (Savage and Lun 1988; Dolgunin and Ukolov 
1995; Gray and Thornton 2005; Gray and Chugunov 2006).

Comminution has also been a hot topic of study, but in general this study has 
been limited to closed systems where particles are prohibited from advecting in 
space (Steacy and Sammis 1991; McDowell et al. 1996). This is very rarely the 
case in experiment, industry, or in the field. When particles crush, the void spaces 
near the crushed sites rearrange. This can cause compaction in some areas, which 
must inevitably cause dilation in others.

In a general sense, there exists a fundamental problem with comminution mod-
elling in that for any crushing event, we expect a change in the local arrangement 
of neighbours surrounding the crushing site. Conversely, local crushing events are 
often attributed to different modes of fracture—which are dependent on the load-
ing state of individual particles, and strongly dependent on the local arrangement 
of particles. If particle arrangement is of paramount importance, then for any con-
tinuum approach, there is a fundamental issue which needs to be addressed: How 
does one characterise the local arrangement of particles, well below the resolu-
tion of the continuum? In this work, previous comminution models (Steacy and 
Sammis 1991; McDowell et al. 1996) are extended to allow open systems to be 
studied, in conjunction with simple models of mixing and segregation (Dolgunin 
and Ukolov 1995; Gray and Thornton 2005; Gray and Chugunov 2006; Marks and 
Einav 2011; Marks et al. 2012).

2  Continuous Open Systems

We will describe here the evolution of a system of grains with no interstitial fluid, 
intrinsically involving grainsize distribution at every point in space. For any given 
volume V in space r= {x, y, z} and time t, there exists a subset which is filled with 
grains Vs. We can then describe the volume fraction Φ that is filled by a given 
grainsize range (sa, sb] as Φ(sa < s ≤ sb, r, t) = V(sa < s ≤ sb, r, t)/Vs(r, t), 
where V(sa < s ≤ sb, r, t) is the volume occupied by the given grainsize 
range. Furthermore, we can define a probability density function Φ(s, r, t) 
such that its’ integral over the grainsize coordinate is the volume fraction, 
Φ(sa < s ≤ sb, r, t) =

∫ sb
sa

φ(s, r, t)ds. With these definitions, it is possible to 
define conservation of mass of such a system (Ramkrishna 2000), given that it is 
homogeneous (constant density ρ), as

where u(s, r, t)= {u, v, w} is the velocity of the material, hb(s, r, t) is the birth rate, 
and hd(s, r, t) is the death rate. These rates could, for instance, represent the birth 
of new particles of a given grainsize due to the death (fracture) of a larger particle. 
In this case, for some breakage rate b (s, r, t), the death rate could be expressed 
simply as

∂φ

∂t
+∇ · (φu) = hb + hd ,
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and the corresponding birth rate would involve a summation over the deaths of all 
particles larger than a given size, as

where P
(

s|s′
)

 is the probability that a volume of particles of grainsize s will frag-
ment into grainsize s′. In a similar manner to conservation of mass, it is possible 
to define conservation of momentum for the same system (Dolgunin and Ukolov 
1995; Gray and Thornton 2005; Gray and Chugunov 2006; Marks et al. 2012) 
such that

where σ(r, t) is the size independent stress field, f(s, Φ is some grainsize depend-
ent scaling of the stress, g    is the acceleration due to gravity,) γ̇ is the shear 
strain rate, c  a coefficient of inter-particle friction, û(s, r, t) = u(s, r, t)−

∫

uφds 
is the segregation velocity and d  the diffusivity. This can be integrated over the 
full grainsize direction to describe the motion of the bulk (barycentric) flow, as 
ρ
Du
Dt

= −∇ · σ + ρg, where we have required that 
∫

φfds = 1 so that conservation 
of bulk momentum satisfies the standard conservation law. Assuming that there is 
no bulk flow normal to the slope and that the segregative flow is slow, conservation 
of segregative momentum can be used to find the segregation velocity, ŵ, normal 
to the flow direction as

where we have assumed that f (s,φ) = s/s̄, and s̄ =
∫

φsds. We have considered 
here three mechanisms for grainsize change—mixing, segregation and crushing, 
as continuum phenomena. We will now present their analogous formulations as 
discrete phenomena in a simple lattice model.

3  Discrete Open Systems

3.1  Mixing

For the case of mixing of grains, there exists a strong, well established connec-
tion between the uncorrelated motion of individual constituents in a mixture, and 
large scale mixing of the system. This has been modelled extensively in a large 
variety of ways, and here we wish to describe a simple, two dimensional lattice 
to replicate this behaviour. Consider a system made of NxM cells, with position  

hd = bφ

hb =

∞
∫

s

P
(

s|s′
)

b
(

s′, r, t
)

φ
(

s′, r, t
)

ds′,

ρ
D

Dt
(φu) = −φf∇ ◦ σ + ρφg−

ρφc

γ̇
û− d∇φ,

ŵ = |γ̇ |
g cos θ

c
(
s

s̄
− 1)−

d|γ̇ |

cφ
∇φ,



36 B. Marks and I. Einav

i, j = {1…N, 1…M} of equal volume, each filled by particles of a single grainsize 
si,j. The i direction represents a spatial coordinate, such as the perpendicular dis-
tance from the base of a flow towards the free surface. The j direction represents 
an internal coordinate which can be averaged over to describe the grainsize dis-
tribution. For this system, we can evolve in discrete time steps �t. At each time, 
for each location {i, j}, a coin is flipped. Depending on the result, the grainsize is 
swapped with the cell either above or below it; Flip a coin, if heads: si,j ⇔ si−1,j, if 
tails: si,j ⇔ si+1,j. An example of this lattice model is shown in Fig. 1. By choos-
ing an appropriate rate of swapping, this model is equivalent to Fickean diffusion 
(Chopard and Droz 1991; Utter and Behringer 2004), described by

3.2  Segregation

Segregation also describes advection, but now at a rate that is grainsize dependent 
(Savage and Lun 1988). We can capture this in a lattice model by swapping in a 
direction that depends on the local mean grainsize. Our rule of segregation is then:

∂φ

∂t
=

d|γ̇ |

c

∂2φ

∂z2
.

If
(

si,j < si,j
)

∧
(

si,j < si−1,j

)

: si,j ⇔ si−1,j.

If
(

si,j < si,j
)

∧
(

si,j > si+1,j

)

: si,j ⇔ si+1,j.

Fig. 1  Top left The mixing lattice model. Initially two phases are separated spatially, but over time 
they mix together. Top right The segregation lattice model. Initially two phases are well mixed (blue 
is large and yellow is small). Over time the two species de-mix such that the larger particles are 
spatially above the smaller ones. Bottom The crushing lattice model. Initially a bidisperse mixture is 
composed of two phases which crush over time such that local neighbours are of different size
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Figure 1 shows an example of segregation, where an initially well mixed bidis-
perse system separates so that all of the large particles are arranged above to 
smaller ones. By carefully choosing the grainsize dependence of the rate of swap-
ping, we can use this lattice model as a discrete representation for the following 
continuum equation,

3.3  Crushing

Many cellular automata have been motivated to describe crushing in granu-
lar materials, but generally only for closed systems (Steacy and Sammis 1991; 
McDowell et al. 1996). They typically rely on two competing mechanisms to 
facilitate realistic behaviour. Firstly, smaller particles are more difficult to crush—
because of their inherent smaller volume, they contain less large cracks, increas-
ing their crushing stress (Weibull 1951). Secondly, particles which are surrounded 
by neighbours of a similar size have in general a lower coordination number, and 
are therefore more likely to crush due to the anisotropy of their loading condition. 
These two mechanisms are included in the following simple rule for crushing

where β is a non-dimensional coefficient controlling the crushability, and X repre-
sents an i.i.d. random variable drawn uniformly from the interval (0,1]. Using this 
rule we can obtain an example such as that pictured in Fig. 1. Other simple numer-
ical models have shown that the grainsize distribution evolves towards a power-
law from such rules (Steacy and Sammis 1991; McDowell et al. 1996).

Each of these mechanisms alters the grainsize distribution either spatially or 
locally. In the future, the choice of a lattice model as the basis for the model will 
allow us to simply combine these rules, and observe possible complex interactions 
which may arise.

4  Conclusion

A continuum description for the evolution of the grainsize distribution in open 
systems has been developed for the three mechanisms of mixing, segregation 
and crushing. Analogous lattice models have also been described, and examples 
of their operation have been shown. These complimentary views of open systems 
give insight into the evolution of the complex phenomena present in many indus-
trial and geophysical granular flows.

∂φ

∂t
=

g cosφ

c

∂

∂z
(φ|γ̇ |(

s

s̄
− 1).

If
∣

∣si,j − si,j
∣

∣ ≤ βsi,j : si,j(t +∆t) = Xsi,j(t),
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